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ABSTRACT 

Liquid biopsy has the potential to enable diagnosis, prognosis, and monitoring of 

some diseases at an early stage using body fluids from patients. This minimally invasive, 

label-free detection method is less likely to harm the cell’s viability through binding to 

the surface protein. Smart integration of liquid biopsy designs with microfluidics on a 

single chip will lead to a considerable reduction in the detection time (due to controlled 

diffusion length), and the volumes of sample, agent and reagent, and the limit of 

detection.  

Optical label-free biosensors are a powerful tool to analyze biomolecular 

interactions and have been widely studied in the field of biomedical and biological 

science and engineering. Label-free detection enables direct measurement of key 

characteristic properties of the chemical compound, DNA molecule, peptide, protein, 

virus, or cell, while eliminating experimental uncertainty induced by the effect of the 

label on molecular conformation, thus reducing the time and effort required for bioassay. 

Existing optical label-free biosensors suffer from three limitations, including low 

detection sensitivity, slow molecules mass transfer, and poor throughput. The goal of this 

dissertation is to overcome these limitations through the development of a novel and 

efficient modality towards liquid biopsy-based bioassay with increased detection 

sensitivity, speed, and throughput.   

To increase the detection sensitivity, we investigate the optical bound states in the 

continuum (BIC) of slotted high-contrast grating (sHCG) structures. We demonstrate that 

the sHCG support BICs and high-Q resonant modes, and the slot position can be utilized 

to tune and optimize the linewidth of the high-Q resonances. To overcome the mass-



www.manaraa.com

xvii 

transfer limitation and reduce the assay time, we propose a lateral flow-through optical 

biosensor integrating high-contrast gratings and microfluidics on a silicon-on-

insulator platform. The biosensor design allows reducing the diffusion length to a 

submicron scale and enhancing direct interactions between the analytes and 

sensing structures.  Finally, we develop a high-throughput, label-free exosome 

vesicles (EVs) detection microarray formed on a photonic crystal (PC) biosensor 

surface. We design and implement a hyperspectral imaging approach to quantify the 

antibody and EV absorptions on the PC-based microarray consisting of a panel of seven 

antibodies specific to multiple membrane receptors of the target EVs. We validate that 

the EV microarray by adopting it to detect EVs released by macrophages for the analysis 

of immune responses.  
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CHAPTER 1.    INTRODUCTION 

 Background and Motivation 

Currently, existing optical label-free biosensors suffer from three major limitations: 

insufficient detection sensitivity, slow mass transfer, and poor throughput. This dissertation 

seeks to develop a new modality able to overcome these limitations. First, we describe the 

background of the optical label-free sensing. Then, we look into the challenges of label-free 

biosensors and come up with our solutions, including (1) designing high-contrast gratings 

with a high-quality (Q) factor to improve the detection sensitivity; (2) developing a rapid, 

lateral flow-through, optofluidic biosensor to overcome the mass-transfer limitation; and (3) 

developing a label-free imaging-based microarray to achieve the high-throughput molecular 

profiling of exosome vesicles (EVs). Lastly, we outline the work presented here.  

Liquid biopsy has significant advantages over traditional tumor biopsies [1-4]. 

Generally, cancer cells secrete cytokines, chemokines, and nucleic acids that have 

traditionally served as biomarkers for disease diagnosis and prognosis. Consequently, several 

detection assay methods have been developed to perform cell-based assays. The biosensor-

based detection approaches can be broadly classified into label-based and label-free types. 

Label-based detection relies on the specific properties of labels for detecting a particular 

target. For example, fluorescence labeling [5-9], chemiluminescence [10-12], and 

radiolabeling labeling [13-15] are three popular label-based techniques. The principle of the 

fluorescence biosensor is that the target molecules with labeled reagents, such as antigens 

with fluorophore are loaded on the surface immobilized by the probe molecules. Although 

fluorescence-based biosensors can be thought of as the short-time category of luminescence, 

the labeling of biomolecules with fluorescent or other similar tags for detection can result in 
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sample losses during the labeling and purification process and occasional loss of 

functionality. 

In contrast, label-free detection does not require labeling of ligand or receptor [16-

21]. Optical label-free biosensors can screen for biologically active molecular interactions 

and cellular responses, and provide detailed information on selectivity, kinetics, and binding 

affinity. The approach is suitable to detect target molecules that are not labeled or screen 

analytes that are not easy to tag. Because the label-free biosensors skip the labeling process, 

they can greatly simplify the time and effort required for assay development, thus offering 

rapid and simplified assays [22-30]. Among various biosensor systems, label-free optical 

biosensors often have faster response and higher signal-to-noise (S/N) ratio [31], and thus are 

regarded as a new generation of analytical modalities for studying biomolecular binding, 

recognition, and function.  

In the category of label-free biosensors, surface plasmon resonance (SPR) initially 

dominated commercial label-free biosensor solutions [32, 33]. Recently, other optical label-

free biosensors have emerged with much higher performances than SPR using various optical 

structures such as slot waveguide [34], ring and disk resonators [35], interferometer [36], and 

porous materials [37]. These new label-free biosensors have the potential to meet the 

biosensing need in the field of biomedical and biological science and engineering, including 

apoptosis, bacteriology, virology, molecular engineering, cell biology, cell adhesion, signal 

transduction, immune regulation, and enzyme mechanisms.  

 Photonic crystals and high-contrast gratings 

Clinical diagnostic assays require high sensitivity of label-free detection of 

biomolecules (e.g., virus, DNA, and proteins). Although most of the refractive index (RI) 

based biosensors have been proposed, high-quality (high-Q) optical sensors are perhaps the 
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most sensitive label-free sensors to enhance light interactions with the sensing target such as 

proteins. These biosensors use micro/nanophotonic structures to supports multi-pass light 

owing to the difference in refractive index between the photonic structures and surrounding. 

The light confinement leads to an increased effective interaction length, and thus a high-Q 

factor for obtaining high sensitivity of the sensors. 

Photonic Crystal (PC) is a periodic optical structure that has the dielectric constant 

variation to control the flow of light. A PC slab can be seen as a diffraction grating and a 

waveguide brought into proximity. It is often obtained by depositing a dielectric thin film 

with a relatively high refractive index onto a sub-wavelength periodic structure. The PC in 

the form of a sub-wavelength grating is essentially a narrowband optical reflector that 

reflects a particular wavelength of a broadband excitation.  

 

Figure 1-1 Theory of guided-mode resonance [38]. 

Guide-mode resonance (GMR) (shown in Figure 1-1) occurs when the diffracted 

mode and guided-mode meet the phase-matching condition. By taking the grating equation: 

𝑛2 sin[𝜃(𝑚)] = 𝑛1𝑠𝑖𝑛𝜃𝑖𝑛 −
𝑚𝜆0

Λ
𝑠𝑖𝑛𝜙   1-1 
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and the ray-tracing analysis: 

𝛽𝑚 = 𝑘0𝑛𝑒𝑓𝑓 = 𝑘0𝑛2sin[𝜃(𝑚)]    1-2 

for a waveguide into account, the effective refractive index neff inside a 1D-PC can be 

described using Equation 1-3 : 

𝑛𝑒𝑓𝑓 = 𝑛1 sin 𝜃in − 𝑚
𝜆0

𝛬
                                                   1-3 

where n1 is the refractive index of the cladding layer, θin is the incident angle of the 

excitation, λ0 is the free space wavelength of the incident light, and Λ is the periodicity of the 

PC structure. The guided-mode represented when the condition satisfied: 

max[𝑛1, 𝑛3] ≤ 𝑛eff < 𝑛2                                                 1-4 

where n1 and n3 are the refractive indices of the cladding materials above or beneath the 

waveguide layer, respectively, and n2 is the refractive index of the waveguide layer. 

 

Figure 1-2 Schematic of the sHCG structure on an SOI substrate.  

A high contrast grating (HCG) is a planar subwavelength grating structure, where the 

grating material has a greater refractive index than its surrounding materials [39]. An HCG 

(shown in Figure 1-2) can be engineered to display strong broadband reflection and 

transmission, and narrowband high-Q resonances. Following the demonstration of broadband 
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reflection, recent studies have shown that an HCG also exhibits Fano resonances with a high- 

Q factor. In 1929, von Neumann and Wigner first proposed the possibility of BICs based on 

potential engineering [40]. Then, the possibility has been considered by Stillinger and 

Herrick [41]. More recently, Yoon et al. numerically investigated the TM-polarized optical 

bound states in the continuum (BIC) for a one-dimensional (1D) silicon grating [42]. In these 

devices, the optical bound states provide ideal confinement of light in the continuum of the 

free-space light cone. Although the BICs do not radiate, the high-Q modes with quasi-

embedded eigenvalues in the close vicinity of the BICs are particularly interesting, owing to 

their many potential applications to, e.g., optomechanics, nonlinear optics, cavity QED, and 

biomolecule detections. With regard to the HCG, the BICs play an important role in 

determining the characteristics of the radiative high-Q resonances. The underlying principle 

of guided-mode resonance (GMR) can be applied to understanding the resonances. For 

guided-mode resonance, the incoming light is coupled to the in-plane waveguide mode via 

the grating modulation with in-plane wave-vector:  

𝒌// = �̂�𝑘0 𝑠𝑖𝑛 𝜃𝑖 ± �̂�𝐺𝑥 ,     1-5 

where k0 = 2π/λ is the free-space wavenumber and Gx= 2mπ/Λ with an integer m. The in-

plane guided wave is scattered back into the continuum by the grating, and thus behaves as a 

leaky waveguide mode [43]. The constructive interference of the backward-scattered light 

with the zero-order reflection achieves a high-efficiency reflection. Meanwhile, the 

destructive interference of the forward-scattered light with the zero-order transmission 

produces a transmission minimum.  
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 Lateral flow-through assay 

1.3.1 Flow-through v.s. flow-over 

To date, most of the label-free sensors employ the “flow-over” scheme, where the 

analytes diffuse slowly from a bulk solution to the surface of a transducer and rely on the 

analytes in bulk solution to diffuse to the sensing surface (Figure 1-3(a)). This approach is 

simple and has been commonly used but suffers from the mass transport problems that 

negatively affect the detection limit and slow down the detection speed. Practically, 

molecules are dispersed in solutions and are free to diffuse into the liquid volume. When only 

a small number of molecules are studied, a large sensing area often produces a relatively poor 

signal-to-noise ratio. On the other hand, it has been demonstrated that when the sensing area 

is reduced to submicron dimensions and the concentration of the solution is on the order of 

femtomolar, the accumulation time for the detection of a few molecules would be on the 

scale of days. 

 

Figure 1-3 Issues with (a) conventional flow-over sensor and recent (b) vertical flow-through 

device 

To enhance the transport of analyte to the sensor surface, recently, some vertical 

flow-through scheme was implemented in a few label-free sensors [44-48], where an array of 

nanoholes is created in a suspended dielectric or metallic membrane to form a biosensor. 

These nanoholes allow the analytes to pass through the porous membrane (Figure 1-3(b)). 
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When the analyte transport and time response of the flow-through nanohole arrays is 

compared with the traditional flow-over sensors in a microchannel, the transport scaling 

analysis indicates that flow-through sensor exhibits a Peclet number 102-fold less than the 

flow-over scheme with the same flow rate. Also, a 20-fold faster time response is achieved 

for the flow-through case with rapidly diffusing analytes by compare with the flow-over case 

based on their experimental results [46].  

Due to the complex structure, these vertical flow-through devices are difficult to 

make and integrate with other functions (e.g., sorting) on a single chip. Therefore, a lateral 

flow-through device was proposed to not only overcome the issue of diffusion-limited 

detection that occurs in almost all conventional biosensors, but also largely simplify sensor 

design to achieve high S/N ratio and fast detection speed. Effective integration between 

label-free sensors and microfluidics is highly desirable for efficient sample delivery to 

achieve rapid and sensitive detection. Based on the flow over the structure, simply decreasing 

the height of the channel and increasing the fluidic velocity can shorten the analyte binding 

time. The diffusion limit will thus be overcome.  

We use the finite element method to model the kinetic response of the sensor as 

analyte molecules in the bulk solution are transported and diffused to bind with the capture 

antibodies available on the sensor surface. Three processes, including the sample transport, 

diffusion, and surface reaction, are modeled. 

1.3.2 Fluidic Kinetic analysis 

1.3.2.1 Laminar flow 

For the flow velocity field �⃗� , the parabolic fluid flow velocity profile derived from 

the incompressible fluid Navier-Stokes equation with no-slip boundary condition was used. 
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The Navier-Stokes equation governs the motion of fluidics and can be seen as Newton’s 

second law of motion for fluids. In the case of a compressible Newtonian fluid, this yields 

𝜌(
𝜕�⃗⃗� 

𝜕𝑡
+ �⃗� ⋅ 𝛻�⃗� ) = −𝛻𝑝 + 𝛻 ⋅ (𝜇(𝛻�⃗� + (𝛻�⃗� )𝑇) −

2

3
𝜇(𝛻 ⋅ �⃗� )𝐼) + 𝐹    1-6 

 

where �⃗� is the fluid velocity, 𝑝is the fluid pressure, 𝜌is the fluid density, and 𝜇 is the dynamic 

fluid viscosity. 

1.3.2.2 Mass transport and diffused of diluted specious 

At the sensor surface, the kinetic sensor responds as the analyte molecules in the bulk 

solution are transported and diffused to bind with the capture molecules. The governing 

differential equation used for the analyte concentration in the bulk solution was the 

convection-diffusion equation listed below as 

∂𝑐𝐴

∂𝑡
+ ∇ ⋅ (−𝐷∇𝑐𝐴 + 𝑐�⃗� ) = 0      1-7 

where 𝑐𝐴, 𝐷, and �⃗�  are the bulk analyte concentration, bulk diffusion constant, and fluid flow 

velocity vector, respectively.  

1.3.2.3 Surface reaction 

For a one-to-one interaction in solution observed is between an immobilized ligand A 

and soluble ligate B, which can form a complex AB, for the reversible interaction, 

𝐴 + 𝐵
 𝑘𝑎𝑘𝑑 

⇄ 𝐴𝐵     1-8 

The rate of formation of AB complexes at the time t may be written as 

𝑑[𝐴𝐵]/𝑑𝑡 = 𝑘𝑎[𝐴][𝐵] − 𝑘𝑑[𝐴𝐵]     1-9 

where 𝑘𝑎 is the association rate constant and 𝑘𝑑 is the dissociation rate constant. After some 

reaction time t, [𝐵] = [𝐵]0 − [𝐴𝐵], substituting into equation (b) gives 

𝑑[𝐴𝐵]/𝑑𝑡 = 𝑘𝑎[𝐴]([𝐵]0 − [𝐴𝐵]) − 𝑘𝑑[𝐴𝐵]     1-10 
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where [𝐵]0 is the total concentration of reactant B at t = 0. 

In the biosensor, one of the reactants is immobilized to the sensor surface, and the 

other is continuously replenished from a solution flowing past the sensor surface. The 

response cAB corresponds to the amount of AB complexes formed, and the maximum 

response 𝜃0 is proportional to the surface concentration of immobilized ligand. The rate 

equation can thus be written as 

𝑑𝑐𝐴𝐵/𝑑𝑡 = 𝑘𝑎𝑐𝐴(𝜃0 − 𝑐𝐴𝐵) − 𝑘𝑑𝑐𝐴𝐵    1-11 

where 𝑑𝑐𝐴𝐵/𝑑𝑡is the rate of the formation of surface complexes, 𝑐𝐴 is the concentration of 

the analyte in free solution (which is the constant), 𝜃0is the total amount of binding sites of 

the immobilized ligand, and 𝜃0 − 𝑐𝐴𝐵 is the amount of remaining free binding sites at time t.  

At the biosensor surface, the boundary condition is represented by coupling the rate 

of reaction at the surface with the flux of the reacting species and the concentration of the 

adsorbed species and bulk species as 

𝑁 = 𝑘𝑎𝑐𝐴(𝜃0 − 𝑐𝐴𝐵) − 𝑘𝑑𝑐𝐴𝐵    1-12 

where N is the adsorption and desorption of analyte at the reactive surfaces give rise to a net 

flux, which represents �⃗� ⋅ (−𝐷𝛻𝑐𝐴 + 𝑐�⃗� ). At the inlet of the channel where the analyte 

solution is introduced, the boundary condition used here is 𝑐 = 𝑐0. At the outlet, the outflow 

condition is defined as �⃗� ⋅ (−𝐷𝛻𝑐) = 0, and the boundary condition of the channel wall is 

defined as �⃗� ⋅ (−𝐷𝛻𝑐𝐴 + 𝑐�⃗� ) = 0. For the FEM simulation, the association rate constant and 

dissociation rate constant of ka = 1×107 (mol/L)-1s-1 and kd = 0.01 s-1 are used. For the surface 

of the capture antibody, θ0 = 5×10-8 mol/m2 is used. For the flow velocity within the channel, 

a Gaussian distribution profile with a velocity of 0.04 m/min is used. For the diffusion 

coefficient, 1×10-11 m2/s is used. Therefore the Onsager coefficient of mass transport, 
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𝐿𝑚 ≈ √
𝐷2∙𝑣

ℎ
2∙𝑏∙𝑙

3
       1-13 

can be calculated to be 1.2×10-7 m/s. 

 

Figure 1-4 The binding process of the analyte molecules and sensor surface with (a) different 

channel height. (b) different velocity. 

Figure 1-4 (a) compares the assay performance for the scenario in which the sensor is 

placed in the channel with the height h = 0.5 μm, 10 μm, 20 μm, and 50 μm, respectively. 

The height of 0.5 μm corresponds to the flow-through sensor, where the sample only flows 

within the interstitials between the nanoposts. Our results show that the flow-through scheme 

dramatically reduces the time (teq) required to establish steady-state equilibrium. For the 

flow-through assay, the sensor response saturates after 10 min of sample flow. Furthermore, 

we studied the kinetic binding response as a function of sample flow rate (Figure 1-4 (b)). 

High flow rates could result in shorter teq. These results will be used to guide the design of 

the sensor system. 

 Microarray imaging 

Sensitivity and throughput are two key points to evaluate the performance of a label-

free biosensor. We propose a high-contrast grating with a high Q-factor to increase the 
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sensitivity. To maximize the throughput of measurements, we propose a high-throughput 

microarray device that simultaneously performs multiple measurements on a single chip.  

Generally, a microarray consists of surface-immobilized biomolecules such as DNAs, 

proteins, and carbohydrates. These biomolecules are spotted, imprinted, or directly 

synthesized on glass or silicon wafers, or other functionalized surfaces. Edwin M. Southern 

proposed the first simple DNA arrays, which they called “dot blots” in 1975 [49]. Later, 

Fodor et al. fabricated a DNA microarray on glass chips of using photolithographic light-

directed synthesis method in 1991 [50]. Figure 1-5 shows the fluorescence scan of an array of 

1024 peptides generated by a ten-step binary synthesis. Many different types of microarray 

technologies have been developed, and a variety of DNA microarray and DNA chip devices 

and systems have been commercialized. These microarray systems are being used for gene 

expression, genotyping, and other applications.  

 

Figure 1-5 Fluorescence scan of an array of 1024 peptides generated by a ten-step binary 

synthesis [50].  
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Surface plasma resonance imaging (SPRi) microscopy (Figure 1-6) is a well-known 

label-free biosensor technique. SPR is suitable for studying interactions between different 

biomolecules in real-time and refers to the resonant oscillation of conduction electrons at the 

interface between negative and positive permittivity material stimulated by incident light. 

The SPRi measures the reflection coefficient of monochromatic incident light at a fixed angle 

and fixed wavelength. In this system, an expanded and collimated light is incident over the 

entire sensor surface. The microarray will be detected, and the reflection coefficients at 

different locations of the array will be imaged by using a closed-circuit display (CCD) 

camera. Biomolecule binding will change the surface refractive index, and the intensity of 

the reflected light in the corresponding CCD pixel will change proportionally. Therefore, 

combining the SPRi with microarray technologies allow high-throughput detection of 

biomolecule interactions.  

 

Figure 1-6 Surface plasmon resonance imaging (SPRi) microscopy [51]. 
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SPRi requires illumination to pass through biomolecules that introduce changes in 

reflected light intensity that are not related to the surface attachment of the biomolecules. 

Also, the lateral propagation distance of surface plasmons limits spatial resolution [52]. 

Therefore, among the earliest developed label-free imaging modalities based on the PC 

biosensors [53-55], PC Enhanced Microscopy [53-59] represents a new form of optical 

microscopy that uses a PC surface to dynamically detect and visualize biomaterial-surface 

interactions (Figure 1-7).  

 

Figure 1-7 Transmission acquisition mode of photonic crystal biosensor integrated with an 

upright imaging microscope and using laser as light source. (A) Schematic of combined 

label-free and enhanced-fluorescence imaging instrument; (B) Enhanced (a) fluorescence and 

(b) label-free images on a PC biosensor. [60] 

 Dissertation organization 

In this dissertation, I will first introduce a few key concepts extensively used in this 

work in Chapter 1, including the PC and HCG structures, GMRs, label-free biosensors, and 

flow-through biosensors.  
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In Chapter 2, slotted high-contrast gratings or sHCGs are developed, and the BIC 

modes are studied. The eigenvalue solver is used to determine the BICs. Also, the high-Q 

resonance phenomena for both TE (transverse electric)- and TM (transverse magnetic)-

polarized cases are investigated. The sHCG device has a high index sensitivity of 368 

nm/RIU (refractive index unit), thus showing the promise to explore refractive index-based 

sensing using the sHCG device. 

In Chapter 3, based on, an HCG-based lateral flow-through biosensor is developed for 

the detection of cancer biomarker. The sensor design overcomes the mass transfer limitation 

and reduces the limit of detection. The biosensor is formed using the CMOS-compatible 

silicon-on-insulator technology.  

In Chapter 4, we develop a label-free PC based biosensor for rapid and specific 

discrimination of murine host exosome vesicles (EVs) from parasite EVs extracted from the 

culture media. 

In Chapter 5, a high-throughput EV detection assay is developed using a label-free 

EV microarray. The EV microarray enables low-cost, rapid, and high-throughput 

characterization of macrophage EVs.  

In Chapter 6, we conclude this dissertation and look into our future work. 
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CHAPTER 2.    OPTICAL BOUND STATES IN SLOTTED HIGH-CONTRAST 

GRATING 

 Abstract 

This chapter investigates the optical bound states in the continuum (BIC) supported 

by a slotted high-contrast grating (sHCG) structure. The sHCG structure consists of a 

periodic array of silicon ridges with a slot in each ridge. Given that the BICs are perfectly 

confined, their spectral locations are identified using a finite-element method formulated 

from a generalized eigenvalue problem. The real eigenvalues represent the wavelengths of 

BIC modes and the associated eigenvectors correspond to the electric field distributions. In 

the spectral and angular vicinity of the BICs, the leaky waveguide modes are studied using 

the rigorous coupled-wave analysis. The combination of the full-wave eigenvalue solver and 

the coupled-wave analysis provides an ideal setting for investigating the optical BICs of 

periodic structures for various applications. For example, the simulation results show that the 

sHCG structures can support symmetry-protected bound states with zero in-plane wave 

vector as well as high-quality-factor (high-Q) resonances for both TE and TM polarizations. 

By adjusting the slot, the BIC mode can be turned into high-Q modes and the linewidth of the 

mode is determined by the degree of asymmetry. 

 Introduction 

Dielectric slabs with periodic sub-wavelength features, such as photonic crystal slabs, 

guided-mode resonance filters, and high-contrast gratings (HCG), have attracted considerable 

attention for their fascinating optical properties caused by the modulation and confinement of 

light [39, 61-66]. Previous studies carried out on these devices have demonstrated numerous 

applications to high-performance optical filters [67-71], solid-state light sources [72, 73], 

nonlinear optics [74-78], biomolecule detection [79, 80], to name but some. Among the 
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grating-patterned slabs, the HCG structure, built upon a silicon-on-insulator substrate, is 

particularly interesting, owing to its extraordinary optical properties and compatibility with 

the complementary metal-oxide semiconductor process [81]. As reported by Mateus et al. 

[82] and Shokooh-Saremi et al. [83], a HCG device allows broadband reflection with a 

reflectivity more than 99% in the near-infrared wavelength regime. Following the 

demonstration of broadband reflection, recent studies have shown that a HCG device also 

exhibits Fano resonances with a high-quality factor (Q factor). In 1929, von Neumann and 

Wigner first proposed the possibility of BICs based on potential engineering [40]. Then the 

possibility has been considered by Stillinger and Herrick [41]. More recently, Yoon et al. 

numerically investigated the TM-polarized optical bound states in the continuum (BIC) for a 

one-dimensional (1D) silicon grating [42]. 

The existence of a perfectly confined optical mode within the radiation continuum 

was shown using a parallel dielectric grating [84], 1D periodic array of dielectric rods and 

spheres [85, 86], and two-dimensional photonic crystal slab [87-92] that supported a 

scattering resonance with a vanishing linewidth. A recent seminal work by Hsu et al. shows 

experimentally demonstrated the BICs of a2D Si3N4 photonic crystal slab [93]. Later, layered 

sub-wavelength nanoparticles were numerically designed to achieve the BIC in three-

dimensional open scattering systems [94]. For these devices, the optical bound states provide 

an ideal confinement of light in the continuum of the free-space light cone. Although the 

BICs do not radiate, the high-Q modes with quasi-embedded eigenvalues in the close vicinity 

of the BICs are particularly interesting, owing to their many potential applications to, e.g., 

optomechanics, nonlinear optics, cavity QED, and biomolecule detections. With regard to the 

HCG, the BICs play an important role in determining the characteristics of the radiative high-
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Q resonances. However, the relations between the broadband reflective modes, high-Q 

modes, and BICs have not yet been systematically studied.  

 

Figure 2-1 Schematic of 1D sHCG structure on a SiO2 substrate. (Not to scale). The 1D 

sHCG consists of an array of slotted nano-ridges. The device is excited by a plane wave at an 

incidence angle of θi. The TE- and TM-polarized modes correspond to the modes with the 

electric field component parallel and perpendicular to the grating lines, respectively. 

     This paper investigates the TE- and TM-polarized BICs and high-Q resonance 

modes of a silicon-based slotted HCG (sHCG). As shown in Figure 2-1, the sHCG has a 

rectangular nanoslot cut into each ridge of the grating. The position of slot in the ridge can 

determine the resonant characteristics of the device. Since the slot can be fabricated along 

with the HCG structure using a lithography process, the proposed structure is ready for 

manufacture. Although previous studies utilized rigorous coupled-wave analysis (RCWA) or 

a finite-difference time-domain method to identify BICs in an asymptotic manner [42], none 

of these studies directly calculated the eigenfrequency of the resonance modes that do not 

interact with the radiation continuum. Here, we employ a finite-element method (FEM) to 
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solve the eigenvalue problems for the periodic structures, and consequently determine the 

resonance wavelengths (λr) and the associated mode distributions. The eigenvalue analysis 

shows that the BIC wavelengths increase proportionally with increasing grating period and 

that the number of BICs increases with increasing sHCG thickness. To acquire an in-depth 

understanding of the phenomena associated with the BICs, we calculated the spectral and 

angular reflectance of 1D SHCG structures. Furthermore, we show that breaking the 

symmetry in the grating design produces a transition of a BIC mode to a high-Q mode.  

      This paper is organized as follows. Section 2 specifies the SHCG structures and 

Section 3 describes the numerical methods used to analyze and simulate the phenomena of 

interest. Section 4 describes the bound states of the 1D sHCG device for two different 

polarizations. Section 5 demonstrates the possibility of forming an asymmetric SHCG 

structures to turns BICs into high-Q resonances. Section 6 provides concluding remarks. 

 Definitions, phenomenology, and characterization techniques 

2.3.1 sHCG structure and physical principles 

The sHCG structure used in this study consists of a periodic pattern made of silicon 

and formed on a 3-μm-thick SiO2 buffer layer. The main geometric parameters are the 

grating period (Λ1D), grating width (wg), slot width (ws), nanoslot offset from the grating 

center (ds), grating-layer thickness (tg), and duty cycle (η = wg/Λ), as depicted in Figure 2-1. 

For the symmetry protected structure, the slot stands at the middle of the ridge, which ds = 0. 

The period of 1D arrays is smaller than the free-space wavelength λ. The thin device layer of 

silicon can be patterned by lithography, followed by a reactive-ion etching process [95]. 

Crystalline silicon is a suitable material for fabricating high-Q optical devices because it is 

transparent in the near-infrared regime, with a negligible extinction coefficient κ < 0.001 and 

a large refractive index n = 3.477. A plane-wave excitation beam is shone on the device from 



www.manaraa.com

19 

the grating side. As shown in the schematic view of the sHCG devices (Figure 2-1), the 

incident angle θi is measured from the normal of the grating surface Incident plane waves 

with their electric field polarized parallel or perpendicular to the grating bars are described as 

having transverse-electric (TE) or transverse-magnetic (TM) polarizations, respectively.  

      Optical phenomena supported by HCGs and their underlying principles have been 

described previously. [38, 42, 96-98] Briefly, a HCG structure can be engineered to display 

strong broadband reflection and transmission, and narrowband high-Q resonances. The 

underlying principle of guided-mode resonance can be applied to understanding the 

resonances. For guided-mode resonance, incoming light is coupled to the in-plane waveguide 

mode via the grating modulation with in-plane wavevector:  

𝒌// = �̂�𝑘0 𝑠𝑖𝑛 𝜃𝑖 ± �̂�𝐺𝑥 ,     2-1 

where k0 = 2π/λ is the free-space wavenumber and Gx= 2mπ/Λ with an integer m. The 

in-plane guided wave is scattered back into the continuum by the grating, and thus behaves as 

a leaky waveguide mode [43]. The constructive interference of the backward-scattered light 

with the zero-order reflection achieves a high-efficiency reflection. Meanwhile, the 

destructive interference of the forward-scattered light with the zero-order transmission 

produces a transmission minimum. The BIC characteristics can be simulated using 

electromagnetic simulations as discussed below. 

2.3.2 Numerical characterization techniques 

RCWA and the finite-difference time-domain method have previously been used to 

study HCG devices and photonic crystals [42]. These methods can simulate the optical 

phenomena that occur in a structure in response to excitation, and yield the reflectance, 

transmittance, and near-field distribution that can then be used to guide nanostructure design. 
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However, these methods are unable to find non-radiative BICs directly. We therefore 

developed a generalized eigenvalue problem using an FEM-based solver to find all the BICs 

supported by the sHCG structure. The FEM simulation model included only one period of 

the sHCG structure. The periodic boundary condition in the x-direction, together with the 

perfectly matched layers in the z-direction, defined the simulation domain in the x-z plane. 

The simulation domain was discretized using a triangular mesh. By basing the finite-element 

analysis on the electric-field discretization, the variational problem that is equivalent to the 

wave equation (source-free) led to a generalized eigenvalue problem [99]. By solving the 

generalized eigenvalue equation, the eigenvalue solver yielded the eigenvalues and 

eigenvectors, which represent the resonance wavelength and electric field, respectively. Only 

the real eigenvalues correspond to the bound states with a radiative coupling coefficient of 

zero (κ = 0). For the sHCG structure shown in Figure 2-1, we used the eigenvalue solver to 

determine the BICs for different device geometries. The details and equations involved in the 

FEM analysis are given in the Appendix. 

     After finding the BICs, we used the RCWA method to study the BICs in an 

asymptotic manner. The RCWA algorithm is based on the Fourier expansions of the 

electromagnetic fields and the permittivity profiles (εr(x, y)) in each layer of a periodic 

structure. The diffraction efficiencies for each harmonic in the Fourier expansion were 

calculated to determine the reflectance or transmittance. The analysis was carried out using a 

commercial RCWA software package (DiffractMOD, Synopsis). The RCWA simulation was 

set up to analyze a unit volume of the HCG structures, and periodic boundary conditions 

were applied to define the calculation domain, as labeled by the dashed box in Figure 2-1. 

Twenty harmonics were used to expand the permittivity and fields along the x-direction. The 
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dispersive and complex refractive indices of crystalline silicon, n(λ) = nsi(λ) + iκsi(λ), were 

taken from Palik’s handbook [100], where nsi = 3.486 + i0.001 at λ = 1550 nm. The reflection 

and transmission spectra were calculated in the desired near-infrared wavelength range. 

 Eigenvalue analysis of silicon-based sHCGs 

The eigenvalue solver was applied to study how the geometric parameters of the 

silicon grating affect the BICs and illustrate the principles behind the sHCG-supported BICs. 

Material loss was neglected by assuming κsi = 0, leaving out-of-plane scattering as the only 

loss mechanism. As a result, the real eigenvalue solutions correspond to the perfectly 

confined BICs and those with an imaginary part are associated with the modes coupling with 

the radiation continuum. To characterize resonances supported by sHCGs with different 

grating periods, we considered sHCG structures with a thickness, duty cycle, slot width of tg 

= 500 nm, η = 50%, ws = 50 nm, respectively. As for the periodic boundary condition 

described in Eq. A (3), the phase shift was set to 𝜙 = 0, representing the normal incidence 

case with θi = 0°. The grating period ranges from Λ = 500 to 1800 nm with the increment of 

50 nm. Eigenvalues were solved for each grating period, but only the real eigenvalues are 

plotted in Figure 2-2(a) as the BIC resonant wavelengths. The eigen-wavelengths can be 

grouped into three branches. The two branches shown in black represent the TE modes (TE10 

and TE11) and the one shown in red is the TM10 mode. The modes are labeled as TEmn (or 

TMmn), where the integers m and n are determined by the distribution of the longitudinal 

component of the field along x- and z-axes, respectively. The polarizations of these modes 

were determined by the electric-field components given by the eigenvectors. Here, the high 

refractive index grating-patterned silicon slab provides the in-plane confinement. The Bragg 

condition gives the resonance wavelength,  
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λ = 2n𝑒𝑓𝑓Λ/𝑚     2-2                                                       

where neff is the effective waveguide index and m is a positive integer that denotes the 

order of diffraction. According to the Bragg condition, the resonance wavelength increases 

with the grating period, in agreement with the simulation results shown in Figure 2-2(a).  

 

Figure 2-2 Eigen-wavelength calculated as a function of (a) the grating period and (b) the 

grating thickness (c) the slot width. (d) Eigenvectors of the TE10, and TE11 modes when Λ = 

880 nm, η = 50%, and ws = 50 nm labeled by the blue line. For the TE modes, the Ey 

components at the corresponding wavelength 2012 nm and 1519 nm are plotted in the upper 

and lower panels, respectively. (e) Eigenvectors of the TM10 mode. The Ex and Ez 

components of the TM10 mode are shown in the top and lower panels at λr = 1459 nm. 

     Figure 2-2(b) shows the eigen-wavelengths calculated as functions of the grating 

thickness when the grating period and duty cycle are fixed at Λ = 880 nm and η = 50%, 

respectively. The grating thickness increases from tg = 50 to 1200 nm with the increment of 

50 nm. The number of BIC modes can be estimated as #𝐵𝐼𝐶 =
2𝑡𝑔

𝜆
√𝑛𝑎𝑣𝑔

2 − 𝑛𝑐𝑙𝑎𝑑𝑑𝑖𝑛𝑔
2 , where 

navg can be estimated using the average refractive index of the patterned slab. As shown in 

Figure 2-2(b), the number of BIC modes increases with increasing grating thickness. Single-



www.manaraa.com

23 

mode operation occurs when the grating thickness is less than 200 nm. For each mode, the 

BIC wavelength shifts to the red end as the grating thickness increases. Figure 2-2(c) shows 

the eigen-wavelengths calculated as a function of the slot width ranging from 10 nm to 100 

nm. As shown in the Figure 2-2, the BIC wavelength decreases when the slot widens for all 

three modes (TE00, TE11, and TM10). The blueshift of the resonant wavelength is owing to the 

decrease of the averaged refractive index when the slot becomes wider.  

      Next, the field distributions of the BICs were studied using the eigenvectors 

associated with the real eigen-wavelengths. To this end, we considered a 1D sHCG device 

with grating period Λ = 880 nm, grating thickness tg = 500 nm and slot width 50 nm. This 

particular device supports three BICs at λr = 1455.1, 1558.4, and 2018.7 nm, respectively. 

The modes at λr = 1455.1 and 2018.7 nm are TE-polarized modes with only the Ey 

components shown in the top and bottom panels of Figure 2-2(d). The eigenvectors of the Ex 

and Ez components are trivial and are therefore omitted from the Figure 2-2. The mode at λr = 

1558.4 nm is a TM-polarized mode with its Ex and Ez components shown in Figure 2-2(e). 

Being a TM mode, its Ey component is trivial compared to the Ex and Ez components. The 

resonant field distributions indicate that the order of Bragg diffraction is m = 2. We note that 

the distributions of the resonant fields are antisymmetric and these modes can be considered 

to be symmetry-protected bound states. The coupling to the continuum in the surface-normal 

direction is forbidden because of symmetry incompatibility with the external radiation, 

whose tangential field components are symmetric with respect to the mirror-symmetry axis at 

x = 0. The BIC mode is distinct from the resonance of a distributed-feedback (DFB) cavities 

[101] because they reside inside the light cone of a photonic band diagram, shown in the 

following section. Moreover, we sought the real eigenvalues of the sHCG with the incident 
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light at an oblique angle (0° < θi < 90°). For the structure shown in Figure 2-1(a), real 

eigenvalues are only present when θi = 0°.  

 

Figure 2-3 TM-mode characteristics. (a) Calculated reflection spectra in the wavelength 

range 1200 to 2200 nm, for incident angles ranging from -15° to 15°. (b) the reflection 

spectra calculated for θi = 0°, 0.5°, 1°, 2°, and 5°. The corresponding linewidths for each 

angle are plotted in the inset. (c) The near-field distributions of Ex, Ez, and Hy components 

for the high-Q resonance (Q factor = 1.7 × 105) at λr = 1458.3 nm and θi = 0.01°. 

 Broadband, BIC, and high-Q modes 

The sHCG device can be designed to exhibit a single BIC mode when tg < 200 nm. 

To illustrate the couplings between the broadband reflection, the high-Q mode, and the BIC, 

we selected a design that supports both TE and TM modes. The device consists of a grating 

with period Λ = 880 nm, thickness tg = 500 nm, and slot width ws = 50 nm. As shown in 

Figure 2-2 (a) and (b), there should be two TE modes and one TM mode. We first study the 
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TM mode. The calculated reflection spectra are plotted as functions of the incident angle in 

Figure 2-3(a). The wavelength and incident angle range from 1200 to 2200 nm and from -15° 

to 15°, respectively. The TM-polarized resonances appear as reflection peaks. In contrast, the 

HCG structure without the slot exhibits the TM-polarized resonances as narrowband dips 

[102]. In Figure 2-3(a), the region indicated by the red box contains the BIC and high-Q 

modes. To elaborate on these phenomena, the reflection spectra calculated for θi = 0°, 0.5°, 

1°, 2°, and 5° are compared in Figure 2-3(b). The resonant linewidth decreases significantly 

as the incidence angle approaches 0°. For example, when the incident angle is 1°, the 

resonance linewidth is 1.1 nm, which corresponds to a Q factor of 1305.  In comparison, the 

Q factor increases to 4766.6 nm when θi is reduced to 0.5°. The vanishing of the linewidth at 

θi = 0° implies the existence of BIC. As shown in Figure 2-3(b), the BIC mode locates at λr = 

1458 nm in the spectrum, in agreement with the eigenvalue analysis. Because the TM mode 

displays a weak reflection in the spectral range of interest, the high-Q resonance modes are 

displayed as peaks with a high reflectance at the resonant wavelength. 

      The near-field distribution of a representative high-Q mode is calculated using the 

RCWA simulation and shown in in Figure 2-3(c). Here, the near-field distributions of the Ex, 

Ez, and Hy components are associated with the high-Q resonance (Q factor = 1.3 × 105) at λr 

= 1458.3 nm and θi = 0.01°. The color axis expresses the amplitudes of the electric and 

magnetic fields, normalized by that of the incident field. As seen from the field distributions, 

the maximum field enhancement factor is 1500. The enhancement factor of the field intensity 

is calculated by averaging the electric field intensities within the sHCG area (- Λ /2 < x < Λ /2 

and 0 < z < tg). As a result, the averaged enhancement factor of the field strength is 

approximately 1.7 ×105. The distributions of the tangential components (Ex and Hy) are 
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asymmetric. The mode can be excited because the asymmetric nature of the incident wave at 

θi = 0.01°. 

 

 

Figure 2-4 Characteristics of the TE-mode. (a) Calculated reflection spectra in the 

wavelength range of 1200 nm to 2200 nm as a function of incident angles from -15° to 15°. 

(b) The reflection spectra calculated for θi = 0°, 0.5°, 1°, 2° and 5° for the modes around 

2012.9 nm. (c) The reflection spectra calculated for θi = 0°, 0.5°, 1°, 2° and 5° for the modes 

around 1519.7 nm. The corresponding of linewidth for each small angle shown in inset. (d) 

The near field distributions of Ey, Hx, and Hz components with the high-Q resonances (Q 

factor = 4 × 107) at λr = 2012.9 nm and θi = 0.01° for TE10 (top) and TE11 (bottom) mode, 

respectively. 
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     Having characterized the TM mode, we used the same approach to study the TE-

polarized modes. Figure 2-4(a) shows the reflection spectra of the TE modes plotted as a 

function of the incident angle, which ranges from -15° to 15°. As shown in Figure 2-2(b), 

there are two TE-polarized BIC modes (TE10 and TE11) when the silicon grating thickness is 

500 nm. In Figure 2-4(a), the regions of the TE resonances are outlined by the black (TE10 

mode) and white boxes (TE11 mode), respectively. Figure 2-4 (b) and 4(c) summarizes the 

reflection spectra for θ = 0°, 0.5°, 1°, 2°, and 5° for the TE10 and TE11 modes, respectively. 

Like the TM resonances, the TE modes also display as peaks in the reflection spectra. Also, 

the TE resonance linewidth decreases as the incidence angle approaches 0° and disappears at 

θ = 0°. This phenomenon indicates the existence of the BICs at λr = 1519 and 2012 nm. The 

near-field distributions of a representative high-Q mode for two TE modes are plotted, as 

obtained using the RCWA simulation. Figure 2-4(d) shows the amplitude distribution of the 

Ey, Hx, and Hz components that are associated with the high-Q resonance at θi = 0.01° for the 

TE11 mode at λr = 1519.7 nm (top row) and the TE10 mode at λr = 2012.9 nm (bottom row). 

The tangential components (Ey and Hx) of these mode are clearly asymmetric. The near fields 

of both TE modes are significantly enhanced relative to the incident wave. 

 Asymmetric sHCGs 

In the previous section, we showed that the transition from a BIC mode transit to a 

high-Q resonant mode when the sHCG is illuminated from an off-normal direction (0° < θ < 

1°). Recent research demonstrated an approach for transforming the perfectly confined mode 

to high-Q resonances using non-equivalent sub-cells in one period of the grating [103]. Since 

the BIC mode with kx = 0 is symmetry-protected, an asymmetric design of the sHCG can be 

exploited to eliminate the BIC and tune the high-Q resonant modes. This section 
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demonstrates another approach that allows the precise control of the resonance using the slot 

position.  

 

Figure 2-5 Asymmetric sHCG structure. (a) Schematics of sHCG, where the position of slot 

is shifted from the ridge center by a distance of ds. (b) The reflection spectra for the 

asymmetric grating with ds = 1, 5, 10, 20, and 40 nm. (c) The Q factors are plotted as 

functions of ds. 

As shown in Figure 2-5(a), we shift the slot from the center of the ridge to the right 

(or left) side with an offset of ds. The shift of the slot results in an asymmetric sHCG 

structure.  As a result, the symmetry-protected BIC mode disappears, and all the eigenvalues 

are complex. The resonant wavelength and the Q-factor are associated with the shift distance. 

Using the RCWA simulation, we studied the reflection characteristics of the asymmetric 

sHCG with the slot at off-center positions. Figure 2-5(b) shows the reflection spectra for ds = 

1, 5, 10, 20, and 40 nm, respectively, for the TM10 mode. The incident angle is kept at θi = 0° 

and the slot width is set as ws = 50 nm.  The resonant wavelength increases while the position 

of slot moves. It is clear that the resonant linewidth significantly increases as the slot 

approaches edge of the ridge. The device with the ds as small as 1 nm exhibit the linewidth of 

0.004 nm and the Q-factor of 3.6 × 105. Increasing ds to 5 nm broadens the resonant 

linewidth to 1 nm (Q-factor of 1451). To elaborate how the resonance characteristics of the 

asymmetric SHCG resonator can be tuned, we summarized the Q factor as a function of slot 
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position in Figure 2-5(c). As shown in the figure, the Q-factor decreases exponentially with 

the shifting of the slot towards the edge of the ridge.  

 

Figure 2-6 Resonant characteristics of the asymmetric sHCG structure. (a) and (b) Resonant 

wavelength and loss as a function of slot position for TE10, TE11, and TM10 modes, 

respectively. (c) Reflection spectra for the asymmetric sHCG devices with ds = 80, 120, and 

140 nm, respectively. 

      We also used the eigenvalue solver to study the resonant wavelength and loss of 

the asymmetric sHCG devices. In the case of ds ≠ 0, all the eigenvalues are complex 

numbers. The real part of the complex number is the resonant wavelength of the asymmetry 

sHCG. Figure 2-6(a) shows the calculated eigen-wavelength as a function of the slot 

position. The resonant wavelengths of both TE01 and TE11 modes decrease with the moving 

of the slot away from the center of the ridge. On the other hand, the resonant wavelength of 

the TM10 mode increases while increasing the ds. The breaking of device symmetry 

introduces radiation loss, which depends on the position of the slot. The radiation loss can be 

calculated using the imaginary part of the eigenvalues when ds ≠ 0. Figure 2-6(b) shows the 

change of radiative loss as a function of the slot position. For all three modes, the loss is 

strong when the sHCG has the highest degree of asymmetry, which the center of the slot will 

be located at wg/4 = 110 nm. Thus, the loss achieves maximum when ds is approximately 85 

nm. The BICs exist with zero radiative loss when the slot locates at the middle of the ridge 
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(ds = 0) and the boundary of the ridge (ds = 84.3 nm). Figure 2-6(c) shows the reflection 

spectra when ds = 80, 120, and 140nm, respectively. When ds increases beyond 80 nm, the 

resonant linewidth starts to decrease. 

 Conclusion 

Optical bound states and the associated high-Q resonant modes supported by silicon-

based sHCG structures were studied numerically. Special attention was given to the FEM 

eigenvalue solver, which is capable of finding the resonant wavelength and the near-field 

distributions of the BICs. The results show that the number of bound states supported by a 

SHCG structure is determined by the silicon slab thickness. Using the calculated eigen-

wavelengths, RCWA simulations were performed to characterize the resonant modes that are 

spectrally and angularly close to the BICs. The sHCG design investigated above displays one 

TM-polarized and two TE-polarized BICs. The TE- and TM-polarized resonances appear as 

narrowband peaks in the reflection spectra. Because the BICs are perfectly confined bound 

modes, they cannot be excited. The simulation of an asymmetric sHCG structure 

demonstrates that the BIC mode can be turned into a high-Q resonance, with the Q factor 

being controlled by the degree of asymmetry. 

The BIC and neighboring resonant modes of the sHCG structure can be applied to the 

construction of high-Q optical resonators in the fields of optomechanics, nonlinear optics, 

and cavity QED with a tunable Q-factor by changing the coupling angle. They can also be 

used for refractive index-based biomolecule detection. The numerical techniques presented in 

this paper enable both source-excited and source-free assessments of BICs in slabs with a 

patterned grating. Understanding the phenomena above is an important step towards 

exploring more complex mechanisms involving the couplings between free-space fields, 

BICs, and high-Q modes. 
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 Appendix: Governing equations for the FEM eigenvalue solver 

The electric field in the sHCG structure satisfies the second-order wave equation 

                   𝛻 × 𝜇𝑟
−1(𝛻 × 𝑬) − 𝑘0

2(𝜀𝑟 +
𝑖𝜎

𝜔𝜀0
)𝑬 = 0,     inΩ   2-3 

and is subject to the following condition for a perfect electric conductor and floquet 

boundaries: 

                              �̂� × 𝑬 = 0        onΓ1    2-4 

                            𝑬𝐹𝑙
= 𝑒𝑖𝜙𝑬𝐹𝑟

     onΓ2    2-5 

where Γ1 and Γ2 are the boundaries along the z- and x-axis, respectively. In equation 2-

3, the relative permeability μr = 1, and σ and εr denote the relative permittivity and 

conductivity. In equation 2-5 𝑬𝐹𝑟
and 𝑬𝐹𝑖

are the fields at x = 0 and Λ, respectively, and the 

phase shift is given by 𝜙 = 𝑘𝑥Λ = 𝑘0 sin 𝜃𝑖Λ. Perfect matching layers (PMLs) are applied 

along the z-direction to absorb the outgoing waves. In the PML regions, the anisotropic 

absorber model is used to create a reflection free interface [104]. Then, by applying the 

variational principle, the solution to the problem defined by equation 2-3 - 2-5 is equivalent 

to 

𝐹(𝑬) = ∬ [𝜇𝑟
−1(∇ × 𝑬) ∙ (∇ × 𝑬) − 𝑘0

2𝜀�̅�𝑬 ∙ 𝑬]𝑑Ω
1

2
   2-6 

To solve equation 2-6, the electric field in the computation domain is discretized 

using the triangular elements,  

                  𝐸𝑡
𝑒 = ∑ 𝑒𝑡𝑖

𝑒𝑛
𝑖=1 𝑁𝑖

𝑒  and 𝐸𝑧
𝑒 = ∑ 𝑒𝑧𝑖

𝑒 𝜁𝑖
𝑒𝑛

𝑖=1     2-7  

where𝑁𝑖
𝑒 (𝜁𝑖

𝑒) and 𝑒𝑡𝑖
𝑒  denote the vector expansion functions and the corresponding 

expansion coefficients. The final discretization of the variational problem equation 2-6 

amounts to a generalized eigenvalue problem 
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where A and B are complex matrices. Once the eigenvalues of equation 2-8 are 

solved, the eigen-wavelengths are calculated as λr = 2π/k0. 
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CHAPTER 3.    AN OPTOFLUIDIC METASURFACE FOR LATERAL FLOW-

THROUGH DETECTION OF BREAST CANCER BIOMARKER 

 Abstract 

The rapid growth of point-of-care tests demands for biosensors with high sensitivity 

and small size. This paper demonstrates an optofluidic metasurface that combines silicon-on-

insulator (SOI) nanophotonics and nanofluidics to realize a high-performance, lateral flow-

through biosensor. The metasurface is made of a periodic array of silicon nanoposts on an 

SOI substrate, and functionalized with specific receptor molecules. Bonding of a 

polydimethylsiloxane slab directly onto the surface results in an ultracompact biosensor, 

where analyte solutions are restricted to flow only in the space between the nanoposts. No 

flow exists above the nanoposts. This sensor design overcomes the issue with diffusion-

limited detection of many other biosensors. The lateral flow-through feature, in conjunction 

with high-Q resonance modes associated with optical bound states of the metasurface, offers 

an improved sensitivity to subtle molecule-bonding induced changes in refractive index. The 

device exhibits a resonance mode around 1550 nm wavelength and provides an index 

sensitivity of 720 nm/RIU. Biosensing is conducted to detect the epidermal growth factor 

receptor 2 (ErbB2), a protein biomarker for early-stage breast cancer screening, by 

monitoring resonance wavelength shifts in response to specific analyte-ligand binding events 

at the metasurface. The limit of detection of the device is 0.7 ng mL-1 for ErbB2. 

 Introduction 

Optical label-free biosensors can detect biomolecules based on their intrinsic physical 

properties, such as Raman scattering, refractive index, and second harmonic generation [105-

108]. In particular, many refractive index-based biosensors have been implemented to study 

analyte-ligand interactions without using labels [109-111]. In contrast to binding assays that 
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require fluorescent or enzymatic tags, label-free assays often eliminate the need for time-

consuming labeling processes and can monitor binding kinetics in real time [112-114]. 

Therefore, label-free biosensors are gaining increasing attention in the fields of life sciences, 

pharmaceutics, and clinic diagnosis [115-124]. Recently, optical resonators using surface 

plasmon resonance, photonic crystal, and whispering gallery mode [53, 125-129] have been 

extensively studied and exploited for label-free biosensors. Owing to their strong ability to 

confine resonating fields, these biosensors are sensitive to the presence of biomaterials 

immobilized in the close vicinity of their surfaces [130].   

While significant progress has been made to develop optical label-free biosensors, 

how to efficiently delivery samples to the sensor surface remains challenging. To address the 

issue with the mass transfer limitation, microfluidic systems have been developed and 

applied to label-free biosensors [131, 132]. To improve the integration between the sensing 

and fluidic elements, several optofluidic biosensors (e.g., liquid-core ring resonators [133] 

and anti-resonant reflecting optical waveguides [134]) have been used to facilitate the 

transport of analyte. Both the microfluidic and optofluidic approaches rely on a flow-over 

scheme, where liquid samples flow through a channel, during which the analytes diffuse 

from the sample stream onto the surface of the biosensor [135-138]. Recently, a vertical 

flow-through sensor design was implemented to label-free optical biosensing, where liquid 

samples flow through a horizontally placed, nanopatterned dielectric or metallic diaphragm 

with nanoholes that functions as both the sensing element and conduits [44, 46, 48, 139]. 

This sensor has enhanced the interaction between the sensing surface and analytes, thus 

reducing detection time.  
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Figure 3-1 (a) Schematic illustration of the optofluidic metasurface with a 2D array of SNPs. 

(b) SEM image of the fabricated SNPs. The inset shows a perspective view of the SNPs. (c) 

SEM images of the nanofluidic channel where the SNPs are sandwiched between the buried 

oxide of an SOI substrate and a capped PDMS cover. A sample can laterally flow through the 

SNP region and be captured by the recognition biomolecules onto the metasurface. 

This paper reports on a novel lateral flow-through biosensor, consisting of a 

metasurface with a two-dimensional (2D) periodic array of silicon nanoposts (SNPs), for the 

detection of cancer biomarker. The structure is manufactured in the thin top silicon layer of a 

silicon-on-insulator (SOI) substrate, coated with graphene oxide (GO) nanosheets, and 

biofunctionalized with specific antibody molecules. A polydimethylsiloxane (PDMS) slab 

with an inlet and an outlet is bonded to the top surface of the SNPs, thus restricting the flow 

of liquid analytes in between the PDMS and the buried oxide layer of the SOI substrate 

(Figure 3-1). It is worth noting that silicon or SOI-based metasurfaces have attracted 

increasing attention due to the flexibility in tuning of their optical properties [140-142], and 

the fabrication compatibility with complementary metal-oxide-semiconductor (CMOS) 

process. The high refractive index of silicon is favourable for light modulation [71, 143-146], 

e.g., to enhance optical fields. Our biosensor is featured with the lateral flow-through design 

for improved analyte-ligand interactions at the metasurface. Owing to a reduced diffusion 

length, the biosensor design will overcome the issue of mass transfer limit that occurs in 
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many existing label-free biosensors [147]. Therefore, the biosensor will have an improved 

sensitivity and a reduced assay time. In addition, the metasurface supports different optical 

resonance modes, such as the bound states in the continuum (BIC) mode, and leaky 

waveguide mode [97, 148, 149], to detect biomolecule absorptions. In this work, the guided 

mode resonance (GMR) mode, whose linewidth depends on the coupling angle, is utilized 

and exhibits a high sensitivity to a change in refractive index at the surface of SNPs. The 

sensor design emphasizes both analyte delivery and sensitivity. The key figure of merit of the 

device and its ability to detect cancer biomarkers are demonstrated.  

 Experimental section 

3.3.1 Fabrication of the optofluidic metasurface 

An SOI wafer is used to fabricate the SNPs. First, 200 nm-thick PMMA is coated 

onto the substrate at 2000 rpm for 45 sec. Subsequently, e-beam lithography is used to 

pattern the nanoholes array in the PMMA. Next, a 15 nm-thick Al2O3 layer is evaporated 

using electron-beam evaporation, and then patterned using lift-off process, to form a 

protection layer during the following deep reactive-ion etching of Si (Figure 3-1(b)). After 

the SNPs are formed, the Al2O3 layer is removed via wet chemical etching. The overall size 

of the device is 1 1 mm2. To enable laterally flowing liquid analytes through the SNP area, 

a 2 mm-thick PDMS slab with the pre-drilled inlet and outlet is bonded directly onto the top 

surface of the SNPs via oxygen plasma treatment. Figure 3-1(c) shows the formed 

nanofluidic channels embedded with the SNPs. 

3.3.2 Setup for optical reflection measurement 

A tunable laser (ANDO, AQ4321) is used as a light source providing a wavelength 

range from 1520 nm and 1620 nm with a central wavelength of 1570 nm. The light is 

collimated and incident onto the metasurface through a 50/50 beam splitter cube. The 
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biosensor is mounted on a rotation stage to adjust the angle of incidence. The reflection 

spectrum is measured in real time using an InGaAs photodetector synchronized through an 

oscilloscope. 

3.3.3 ErbB2 detection assay 

The biosensor is used to quantify a well-established breast cancer biomarker, ErbB2 

[150]. The biofunctionalization of the surface begins with introducing an intermediate layer 

of GO to the surface.  The GO layer allows enhancing the loading capability of anti-ErbB2 

molecules. In this step, the metasurface is treated with oxygen plasma for 50 sec to make the 

SNPs hydrophilic. Next, a well-dispersed solution of single-layer GO nanosheets (0.4 mg 

mL−1) is prepared in DI water, followed by thorough sonication for 1 hr. 50 μL of this 

solution is drop-cast onto the metasurface and then dried at room temperature (25 °C) for 2 

hr. 20 µL of PBS (pH = 7.4) solution containing anti-ErbB2 molecules (0.24 µM) is drop-

cast onto the GO-coated metasurface, followed by treating a mixed solution of EDC (1-ethyl-

3-(3-dimethylaminopropyl) carbodiimide hydrochloride, 0.2 M) and NHS (N-

hydroxysuccinimide, 0.05 M) at a 1:1 ratio [151]. The abundant oxygenated groups such as -

COOH and -CHO at GO are activated and utilized to make covalent binding with anti-ErbB2 

using the EDC-NHS coupling chemistry [150, 152]. To immobilize antibody molecules, the 

metasurface is kept in a humidity chamber for 12 hr, and then is washed with PBS to remove 

unbound antibody molecules. The resulting primary amine groups present at anti-ErbB2 bind 

with carboxyl groups at GO to form strong CH-NH amide bonds. Finally, 2.0 mg/mL of 

bovine serum albumin molecules is used to block non-specific sites of anti-ErbB2 on the 

metasurface.  
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 Results and Discussion 

3.4.1 Nanophotonic and nanofluidic simulations 

The SNP array (350 nm thickness) is designed on the top of a 3 µm-thick oxide layer 

to provide an optical resonance around 1550 nm wavelength. The silicon device layer is 

transparent around this wavelength and has a negligible extinction coefficient κ < 0.001 and a 

large refractive index n = 3.477. The geometric parameters of the SNPs include the array 

period (Λ), nanopost width (w), device layer thickness (tg), and duty cycle (η = w/Λ). The 

basic principle of the SNPs and corresponding optical characteristics have been discussed in 

our previous work [148]. The SNPs exhibit a BIC mode and a GMR mode, depending on the 

angle of incidence. As illustrated in Figure 3-1(a), the angle of incidence is defined in terms 

of a standard spherical coordinate system, with the polar angle θi being measured from the z-

axis. Because of the symmetry, the optical responses of the device are polarization-

independent when θi = 0.  

Rigorous coupled wave analysis (RCWA) is used to study optical resonances and 

evaluate their performances for detecting biomolecules (Figure 3-2). The details of the 

RCWA simulation method are described in Supplementary Information. Figure 3-2(a) 

presents the obtained photonic band diagram of the SNPs obtained by plotting the calculated 

reflection spectra as a function of θi. The wavelength and the incident angle change from 

1450 nm to 1650 nm, and from -15° to 15°, respectively. The region indicated by the black 

box (Figure 3-2(a)) contains a BIC mode, which appears at λr = 1536 nm and θi = 0. For the 

angles near the BIC mode, the strong reflection regions accommodate high-sensitivity 

resonance features. Figure 3-2(b) compares the simulated reflection spectra for θi = 0°, 1°, 2°, 

3°, and 4°. Since the characteristics of these two modes are similar to the transverse magnetic 

(TM)-polarized modes of the one-dimensional grating based metasurface demonstrated 
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previously [148], these modes can be named TM-like resonance modes. The obtained 

resonant linewidth decreases as the incidence angle approaches 0°. For example, the 

resonance linewidth at θi = 4° is found to be 30 nm, corresponding to a Q-factor of 52. In 

comparison, the Q-factor significantly increases to 900 when θi is reduced to 1°. The 

vanishing of the linewidth at θi = 0° implies the existence of BIC. 

 

Figure 3-2 Simulated optical characteristics of the 2D array of SNPs. a) Calculated reflection 

spectra over the wavelength range 1450 to 1650 nm, incident angle (θi) in the range of -15° 

to 15°. The region indicated by the black box contains a one BIC mode appears at λr = 1536 

nm at θi = 0. b) Calculated reflection spectra calculated for θi = 0°, 1°, 2°, 3°, 4°, and 5°. c) 

Near-field distributions of the Ex, Ez, and Hy components when λr = 1536 nm and θi = 1° 

The near-field distributions of the resonance mode in the xz-plane (Figure 3-1) are 

calculated using the RCWA method (Figure 3-2(c)). The distributions of the Ex, Ez, and Hy 

components are associated with the resonance (Q-factor = 900) at λr = 1536 nm and θi = 1°. 
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The colour scale represents the amplitudes of the electric and magnetic fields normalized to 

the amplitude of the incident field. As seen from the field distributions, the maximum field 

enhancement factor is as high as 300. The enhancement factor of the field intensity is 

calculated by averaging the electric field intensities within the sensor area (-Λ/2 < x < Λ/2 and 

0 < z < 350 nm). As a result, the averaged enhancement factor of the field strength (intensity 

or amplitude) is ~2.7 x 105. The distributions of the tangential components (Ex and Hy) 

appear asymmetric. The mode can be excited because of the asymmetric nature of the 

incident wave at θi = 1°. Figure 3-3(a) shows the normalized near-field distribution of Ex in 

the xy-plane at the center of SNPs (z = 175 nm). The plot shows five periods of the SNPs 

along both the x- and y- directions. 

 

Figure 3-3 (a) Calculated near-field distribution of Ex for five periods of the SNPs in the x-y 

plane. (b) Simulated distribution of flow rate when the liquid sample passes through the 

lateral flow-through biosensor. 

Fluid dynamics simulations are carried out to illustrate the flowing of an aqueous 

sample through the SNP area (see the details in Supplementary Information). Figure 3-3(b) 

displays the flow velocity distribution at the steady state. The sample solution is infused into 

the channel from the inlet (left boundary) and exits from the outlet (right boundary). The 
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analytes in the sample are not only brought to the sensor surface by the steams, but also 

diffuse to the sensor surface for the analyte-ligand interactions. To ensure high output 

signals, we chose the optical resonance, at which the localized optical field (Figure 3-3(a)) 

well overlaps with the region of analyte absorption. As shown in the following section, the 

biosensor is characterized at θi = 1° to obtain an optimized response. 

 

Figure 3-4 (a) Schematic diagram of the reflection measurement setup (b) Measured 

reflection spectra of the biosensor at five different angles of incidence. (c) Q-factor of the 

resonances as a function of θi. The data is fitted to demonstrate the exponential decrease of 

the Q-factor when θi. increased from 0° to 4° (d) Reflection spectra of the device with the 

sample surface immersed in DI water and solutions of ethanol-water mixtures. The spectra 

were measured at θi. = 1°. (e) Simulation (red line) and experiment (black dots) results of the 

resonance wavelength as a function of the refractive index. 

3.4.2 Characterization of metasurface 

3.4.2.1 Optical characterization 

The fabricated metasurface was characterized by measuring the reflectance from the 

metasurface using the setup shown in Figure 3-4(a). The reflection at a specific angle of 

incidence was measured in the near infrared range. A tunable laser, whose emission 
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wavelength ranging from 1520 nm to 1620 nm, was used as the excitation. The reflected 

laser beam was measured using an InGaAs photodetector.  

Figure 3-4(b) compares the measured reflection spectra when θi = 0°, 1°, 2°, 3°, and 

4°. The black curve represents the reflectance at θi = 0° where the BIC mode resides. 

Because the BIC mode is completely bound, there is no signature of resonance in the 

spectrum. When θi increases, the optical resonances appear as the narrowband dips in the 

reflection spectra. At θi = 1°, the BIC mode turns into a radiative resonance at λr = 1534 nm 

with a linewidth of  λr = 5.8 nm. Further increasing θi from 1° to 4° results in a significant 

increase of the resonance linewidth, while the resonance wavelength remains near λr = 

1537.2 nm. The measured spectra agree well with the simulated results (Figure 3-2(b)). To 

illustrate how to tune the resonance strength by changing θi, the Q-factor is plotted as a 

function of θi (Figure 3-4(c)). The Q-factor decreases exponentially from 270 to 57 with 

increasing θi from 1° to 4°. It is worth noting that the resonance features a flat angular 

dispersion, which can be exploited to realize refractive index-based sensing with a focused 

excitation. 

3.4.2.2 Refractometric sensing 

Figure 3-4(d) compares the measured reflection spectra when the metasurface is 

covered with different index solutions. The solutions are prepared by mixing deionized (DI) 

water and ethanol at different ratios of 1:2, 4:5, 1:1, 4:3, 2:1, 4:1, and 1:0, to produce the 

refractive indices of n = 1.340, 1.336, 1.334, 1.332, 1.329, 1.325, and 1.318, respectively. 

The black curve in Figure 3-4(d) shows the case when the channel is filled with DI water (n = 

1.318). The resonance dips are found to shift toward longer wavelengths with increasing the 

value of n. These reflection spectra are measured, all at θi = 1°. To calculate the index 
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sensitivity (Sb), the resonance wavelength of the device is plotted as a function of 

surrounding refractive index (Figure 3-4(e)). The resonance wavelengths are found by fitting 

the data in the vicinity of minimal reflection using a 2nd order polynomial function. The slope 

of the linear fit in Figure 3-4(e) is calculated as the index sensitivity Sb = Δλr/Δn = 720 

nm/RIU. 

 

Figure 3-5 (a) Schematics of the label-free assay and SEM of the SNPs with (left half) and 

without (right half) the GO coating. (b) Reflection spectra of the bare sensor, GO layer, and 

anti-ErbB2 antibody coating. Inset: Δλr after each step of the surface functionalization. (c) 

Reflection spectra measured in the present of ErbB2 at a series of concentrations ranging 

from 0.01 to 100nM. (d) Dose response curve for the detection of ErbB2 by plotting the 

resonance wavelength as a function of the ErbB2 concentration. (e) Reflection spectra 

measured for seven different combinations of ErbB2, ErbB3, and ErbB4 antigens. Inset: 

sensor outputs in the presence of interfering molecules. (f)Simulation (red) and experiment 

(black) results of the kinetic binding of ErbB2 and anti-ErbB2 antibody. 

3.4.3 Detection of breast cancer biomarker 

The SNP-based biosensor can be utilized to detect biomolecules, such as DNA, 

protein, or small molecules, in real time. As an example, the device is used to quantify a 
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well-established breast cancer biomarker, ErbB2. As a label-free technology, the SNP-based 

biosensor measures the refractive index change caused by the immobilization of the ErbB2 

molecules. The target ErbB2 molecules are captured by the anti-ErbB2 antibodies on the 

sensor surface. The details of this label-free assay are described in the Experimental section. 

Figure 3-5(a) summarizes the major assay steps, including subsequent deposition of GO, 

anti-ErbB2 antibody, and blocker, and the detection of ErbB2 antigen. The SEM image in 

Figure 3-5(a) show the SNPs with and without the GO coating. The thickness of the GO 

layer is about 30 nm. Figure 3-5(b) presents the measured reflection spectra of the device 

when the SNPs is bared (black), coated with a GO layer (red), and functionalized with anti-

ErbB2 molecules. 

Figure 3-5(c) shows the reflectance spectra recorded when the samples containing 

ErbB2 are injected into the nanofluidic channel. The sample solution is prepared by dissolved 

ErbB2 in a phosphate-buffered saline (PBS; pH = 7.4) solution at six concentrations (0.01 

nM, 0.1 nM, 0.5nM, 1 nM, 10 nM, and 100nM). As the concentration of ErbB2 increases, the 

resonance dip in the reflection spectrum red shifts to longer wavelengths. The total shift of 

the resonance wavelength is approximately 6 nm when the ErbB2 concentration increases 

from 0.01 nM to 100 nM. The dose response for the detection of ErbB2 biomarker is shown 

in Figure 3-5(d). The experiment with a specific ErbB2 concentration repeats five times and 

the error bars represent the standard deviation of resonance wavelength for each 

concentration. The sensitivity of optical sensors can be estimated using Ss = Δλr /∆c, where 

∆c is the corresponding concentration difference. The SNP-based biosensor exhibits a 

sensitivity of 2 nm/nM for ErbB2. 
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Table 1 compares the key performance of this biosensor with some recently reported 

label-free biosensors for the detection of ErbB2 [112, 113, 153-156]. With regards to the 

sensitivity, the SNP-based biosensor outperforms the reported ring resonator biosensor (Ss = 

0.12 nm/nM) and distributed feedback grating (Ss = 2x10-3 nm/nM) biosensor [153, 154]. The 

limit of detection (LOD) of the SNP-based biosensor is found to be 0.7 ng mL-1 using the 3s 

criterion (expressed in concentration units), where s represents the standard deviation of five-

time measurements for the PBS solution. Compared to the other two optical biosensors, the 

SNP-based biosensor provides a lower LOD. In addition to the high refractive index 

sensitivity of the metasurface, the lateral flow-through design contributes significantly to the 

increased sensitivity and the lowered LOD by offering a useful platform for realizing the 

syngeneic interaction between minute amounts of ErbB2 proteins available in the sample and 

the capture molecules on the surface of SNPs. Although some of the reported electrochemical 

biosensors exhibit lower LOD values, our device presents a wider dynamic range. 

Table 1 Performance comparison of the lateral flow-through biosensor with other devices for 

the detection of ErbB2 

 

Device Detection 

type/mode 
Sensitivity Detection range 

(nM) 
Limit of 

detection 

(ng mL-1) 
 

Optofluidic silicon 

metasurface 
Guided mode 

resonance  2 nm nM
-1 0.01 – 10 0.7 

 
Optofluidic ring 

resonator 
Whispering gallery 

mode 0.12 nm nM
-1 0.14 – 3.45 13  

1D distributed feedback 

grating 
1st-order diffraction 

mode 2 × 10
-3

 nm nM
-1 0.028 – 138 14  

Hydrazine-Au 

nanoparticle-aptamer 

bioconjugate 
Electrochemical 15 × 10

-3
 µA nM

-1 1x10
-6 

– 1.381 37  

Sandwich 
magnetoimmunosensor 

Electrochemical 1.4 × 10
-4

 μA nM
-1 1.4x10

-3
– 0.4 0.026  

Capacitance based 

aptasensor 
Electrochemical 1.7 × 10

-3 
pF nM

-1 2.7 x10
-3 

– 2.7 x10
-2 0.2  
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To study the selectivity of the label-free biomarker detection assay, samples 

containing ErbB2, ErbB3, and ErbB4 antigens were measured using the anti-ErbB2 

antibody-coated metasurface. These antigens belong to the ErbB receptor tyrosine kinase 

family, but the ErbB3 and ErbB4 antigens are nonspecific to the anti-ErbB2 antibody[152]. 

Figure 3-5(e) shows the measured reflection spectra of seven samples with different 

combinations of ErbB2, ErbB3, and ErbB4 antigens (1nM). The inset of Figure 3-5(e) 

summarizes the resonance wavelength measured for these samples. The samples with the 

ErbB2 antigen and interfering molecules result in a resonance wavelength shift of 6 nm. In 

contrast, the samples without ErbB2 molecules show very small shift (<1 nm) of the 

resonance wavelength. The results indicate that the SNP-based biosensor is selective to the 

target ErbB2 antigen when the SNPs is functionalized using the anti-ErbB2 antibody.  As a 

label-free detection method, the biosensor can monitor the analyte-ligand binding process in 

real time. In this experiment, the reflection spectra were recorded when the ErbB2 bound to 

the ErbB2 antibody-coated sensor surface. Figure 3-5(f) shows the temporal change of the 

resonance wavelength when the ErbB2 sample (0.01 nM) passes through at a flow rate of 0.3 

µL/min. The simulated and experimental results for ErbB2 and anti-ErbB2 binding are 

compared in Figure 3-5(f). The error bars show the standard deviation of resonance 

wavelength shift for three replicated tests.  The simulation of the binding process is 

performed using a finite element method (FEM) model that includes the fluid dynamics of 

the sample inside the nanofluidic channel, the diffusion of analyte from the solution to the 

sensor surface, and the surface reaction process. The details of the simulation are described in 

the Experiment section. The binding of the ErbB2 to the surface results in an increase of λr 

around 6 nm. 
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 Conclusion 

In summary, this paper demonstrates a label-free, lateral flow-through biosensor that 

combines both biomolecule detection and sample delivery functions using the SOI-based 

metasurface. The SNPs provide numerous nanoscale flow channels to facilitate rapid delivery 

of analyte to the sensor surface. The device utilizes the GMR mode of the metasurface and 

operates in the telecom optical wavelength band. The linewidth of the resonance is tuned by 

changing the angle of incidence. The biosensor exhibits the refractive index sensitivity of 720 

nm/RIU. The biosensor is studied for its ability to detect the ErbB2 breast cancer biomarker. 

Because the SNP-based biosensor can be fabricated using the CMOS-compatible process, the 

device is amendable to integration with a wide variety of lab-on-a-chip components. We 

envision that the biosensor will enable rapid and quantitative analysis in point-of-care 

applications, such as disease diagnosis, drug test, and pathogen detection.  

 Supplementary information 

3.6.1 Electromagnetic modeling 

Optical simulations are carried out using a commercial Rigorous coupled wave 

analysis (RCWA) software package (DiffractMOD, Synopsis). The simulation is set up to 

analyze a unit volume of the metasurface, where periodic boundary conditions are applied to 

define the calculation domain. Ten harmonics are used to expand the permittivity and fields 

along the x-direction. The dispersive and complex refractive indices of crystalline silicon, 

n(λ) = nsi(λ) + iκsi(λ), where nsi = 3.486 + i0.001 at λ = 1550 nm. The reflection and 

transmission spectra are calculated in the near-infrared wavelength range. 

3.6.2 Fluid dynamic simulation 

Finite element method (FEM) is used to simulate how molecules in the bulk solution 

transported to the sensor surface and react with the capture molecules. This dynamic process 
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includes laminar flow transport, diffusion of diluted specious, and surface reaction. 

Stationary laminar flow with no-slip boundary condition and periodic flow condition are used 

in the model. The Navier-Stokes equation governs the motion of fluidics and can be seen as 

Newton’s second law of motion for fluids: 

𝝆(
𝝏�⃗⃗� 

𝝏𝒕
+ �⃗⃗� ⋅ 𝜵�⃗⃗� ) = −𝜵𝒑 + 𝜵 ⋅ (𝝁(𝜵�⃗⃗� + (𝜵�⃗⃗� )𝑻) −

𝟐

𝟑
𝝁(𝜵 ⋅ �⃗⃗� )𝑰) + 𝑭  3-1 

where �⃗� is the fluid velocity, 𝑝is the fluid pressure, 𝜌is the fluid density, and 𝜇is the 

fluid dynamic viscosity. At the sensor surface, the kinetic sensor response as analyte 

molecules in the bulk solution is transported and diffused to bind with the capture molecules. 

The governing differential equation used for the analyte concentration in the bulk solution is 

the convection-diffusion equation listed below as 

𝜕𝑐𝐴

𝜕𝑡
+ 𝛻 ⋅ (−𝐷𝛻𝑐𝐴 + 𝑐�⃗� ) = 0      3-2 

where 𝑐𝐴, 𝐷, and �⃗�  are the bulk analyte concentration, the bulk diffusion constant, 

and fluid flow velocity vector, respectively. At the sensor surface, the boundary condition is 

represented by coupling of the rate of reaction at the surface with the flux of the reacting 

species and the concentration of the adsorbed species and bulk species as 

𝑁 = 𝑘𝑎𝑐𝐴(𝜃0 − 𝑐𝐴𝐵) − 𝑘𝑑𝑐𝐴𝐵    3-3 

where N is the adsorption and desorption of analyte at the reactive surfaces give rise 

to a net flux represented as �⃗� ⋅ (−𝐷𝛻𝑐𝐴 + 𝑐�⃗� ). At the inlet of the channel where analyte 

solution is introduced, the boundary condition used here is 𝑐 = 𝑐0. 
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CHAPTER 4.    RAPID DIFFERENTIATION OF HOST AND PARASITIC 

EXOSOME VESICLES USING MICROFLUIDIC PHOTONIC CRYSTAL 

BIOSENSOR 

 Abstract 

Parasite extracellular vesicles (EVs) are potential biomarkers that could be exploited 

for the diagnosis of infectious disease. This paper reports a rapid bioassay to discriminate 

parasite and host EVs. The EV detection assay utilizes a label-free photonic crystal (PC) 

biosensor to detect the EVs using a host-specific transmembrane protein (CD63), which is 

present on EV secreted by host cells (modeled by murine macrophage cell line J774A.1) but 

is not expressed on EV secreted by parasitic nematodes such as the gastrointestinal nematode 

Ascaris suum. The surface of PC is functionalized to recognize CD63, and is sensitive to the 

changes in refractive index caused by the immobilization of EVs. The biosensor 

demonstrates a detection limit of 2.18×109 EVs/mL and a capability to characterize the 

affinity constants of antibody-host EV bindings. The discrimination of murine host EVs from 

parasite EVs indicates the capability of the sensor to differentiate EVs from different origins. 

The label-free, rapid EV assay could be used to detection parasite infection and facilitate the 

exosome-based clinic diagnosis and exosome research. 

 Introduction 

Recently, membranous extracellular vesicles (EVs), including nanoscale exosomes 

and other vesicles derived from cancer cells, have also been found in the blood of cancer 

patients[157-159]. These membrane-bound phospholipid nanovesicles are actively secreted 

by both prokaryotic and eukaryotic cells, including mammalian cells and pathogens like 

parasitic helminths[160-162]. EVs secreted from helminths contain effector molecules such 

as functional proteins and small RNAs, and as with other systems. There is emerging 
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evidence demonstrating that EVs released from helminths could traffic within the host’s body 

fluid and interact with the immune system to modulate the host immune response[163-165]. 

EVs have also been considered as an important mediator of the cell to cell communication; 

because of the membrane-based structure, they are more stable than proteins and nucleotides 

biomarkers that are secreted alone, which arouses the potential of using EVs to diagnose 

infectious diseases and other human diseases like cancer.  

Rapid, multiplexed exosome analysis can be used to detect minute amounts of various 

biomarkers for diseases that are currently difficult to diagnose and monitor such as cancer, 

infectious, autoimmune and degenerative diseases. Fluorescence-based approaches, such as 

bead-based assays, have the multiplexing capability and high sensitivity but require excessive 

volumes of serum[166, 167]. Compare to conventional methods based on immunoblotting or 

enzyme-linked immunosorbent assay (ELISA) assays[168-171], the PC-based label-free 

assay eliminates the labeling step. The outputs of PC-based devices can be measured in real 

time and the assay time can be significant reduced[25, 109, 172-174]. Recently, several 

biosensors have been reported for the analysis of exosomes[111, 175-180], using surface 

plasmonic resonance[111], nuclear magnetic resonance[179], and electrochemical 

aptasensor[180].  

The paper reports the discrimination of EVs derived from murine macrophages and 

parasites using a photonic crystal (PC) biosensor. The PC biosensor, consisting of a sub-

wavelength grating, is essentially a narrowband optical reflector that reflects a particular 

wavelength of a broadband excitation. The capture of EVs on the biosensor increases the 

refractive index on the sensor surface and results in a change in the light reflectance of the 

PC. Using the PC biosensor, we have developed a label-free binding assay to detect EVs 
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according to their membrane-specific proteins, and distinguish EVs secreted by a murine 

macrophage cell line (J774A.1) and a parasitic nematode (Ascaris suum). In addition, the 

developed assay can measure the binding of EV to its ligand in real time, thus enabling 

characterization of the EV-antibody binding affinity. 

 

Figure 4-1 (a) Schematic diagram of the extraction of EVs from culture media. The EVs 

samples are centrifuged and re-suspended before being flowed into the microfluidic chip. (b) 

Illustration of the microfluidic PC biosensor chip. Four channels are designed for the host, 

parasitic, positive, and negative reference samples respectively. (c) Schematic structure of the 

PC grating and the label-free detection mechanism. The PC surface functionalized with the 

antibody (black box) exhibits resonant reflection (black curve in the reflection spectra). The 

binding of EVs to the antibody (red box) shift the narrowband reflection by a spectral shift of 

Δλr. 

 Experimental section 

4.3.1 Preparation of host and parasite EV samples 

The host and parasite EVs were isolated from spent murine macrophage and parasitic 

nematode culture media, respectively. Murine macrophage cell line (J774A.1) were cultured 

in DMEM containing 10% FBS (Thermo Fisher Scientific, Waltham, MA), 100 Units of 
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penicillin (Thermo Fisher Scientific, Waltham, MA), 100 g/ml of streptomycin (Thermo 

Fisher Scientific, Waltham, MA), and 2 mM L-glutamine (Sigma-Aldrich, St. Louis, MO). 

Female adult Ascaris suum were collected from a local abattoir and maintained in Ascaris 

Ringer’s solution at 37C. Culture media was collected after 24 hr  and filtered using 0.22-

µm syringe filters (Millipore Sigma, Burlington, MA) to remove debris then EV were 

purified by differential centrifugation as previously described[161]; The EV pellets were re-

suspended in 100-L PBS solution and stored in a -80 C freezer. The presence of EVs in 

these isolated preparations was confirmed using Nanoparticle Tracking Analysis (NanoSight 

LM10, Malvern Instruments, Malvern, UK). Figure 4-1(a) illustrates the process of preparing 

membranous extracellular vesicles, including nanoscale exosomes. The details of the 

materials and supplies are given in the supporting information. 

4.3.2 PC biosensors embedded in microfluidic channels 

The PC biosensor used in this study consists of a one-dimensional (1D) grating 

substrate, which is coated with a high-refractive-index thin film as shown in Figure 4-1(b). 

The high-refractive-index thin film acts as a light confinement layer and supports the 

resonance modes that are evanescently confined to the PC surface. The grating modulation 

allows the phase matching of excitation light to the PC resonances and results in the 

narrowband reflection[181].  

The PC biosensors can detect chemicals and biomolecules via the biochemical 

interactions occurred on their surfaces. The adsorbed molecules on the sensor surface cause a 

change in the effective refractive index, which shifts the peak in the reflectance. The amount 

of spectral shift is proportional to the concentration of the target molecule as shown in Figure 

4-1(c). Since its early demonstration[182], the PC biosensor has gained significant attentions 
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and been utilized for the analysis of various biomaterials, such as pathogens, DNA, proteins, 

enzymes, cells, and toxins[182-185].  

The details of the PC fabrication and readout instrument are described in the 

supporting information. In brief, the sub-micron grating structure of the PC biosensor was 

fabricated inexpensively using the nano-replica molding method[186]. The molding silicon 

stamp (LightSmyth Technologies, Eugene, OR) carries a 1D grating with a period of 555.5 

nm. The grating pattern was replicated on the surface of glass coverslip using UV curable 

epoxy (Norland Products, Cranbury, NJ). A titanium-oxide (TiO2) was deposited on the 

replicated grating. To facilitate the detection of EVs, the fabricated PC structures were 

incorporated with microfluidic channels as shown in Figure 4-1(b). Four microfluidics 

channels were created, and each channel contained the PC grating (0.5 mm × 4 mm) in the 

middle. A broadband white light (Ocean Optics, Largo, FL) was used as the excitation and 

the light reflected off the PC grating was analyzed using a compact spectrometer (Ocean 

Optics, Largo, FL)[187]. The measured reflection spectra were analyzed to find the peak 

reflection wavelength (λr). The optical readout system was positioned below the microfluidic 

chip and aligned to the PC regions one at a time.   

Before the sensors are used for the EV analysis, we functionalized the sensor surface 

using the EV specific antibody. The PC biosensor with the antibody coating is illustrated in 

the Figure 4-1(b). When the EVs bind to the antibodies (red box in Figure 4-1(b)), the 

reflection peak wavelength will redshift (Figure 4-1(c)) and the amount of wavelength shift 

(Δλr) will correspond to the concentration of EVs. 
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Figure 4-2 (a) Flow chart for the functionalization of the PC biosensor. (b) Measured 

wavelength shift as a function of time during the functionalization process. The black, red, 

blue, and green portions of the curve denote the PVA, GA, antibody, and BSA coating. (c) 

Resonant wavelength shift of the sensor after each step of the real-time measurement shown 

in (b). 

 Results and discussion 

4.4.1 Surface functionalization for the PC biosensor 

Before the PC biosensor was used for the analysis of EVs, we functionalized the 

sensor surface using a four-step process[188]. Figure 4-2(a) summarizes the major steps of 

the functionalization process (see details in the supporting information). During the process, 

the resonant wavelength shift was recorded every two seconds and plotted in Figure 4-2(b). 

The initial step (black line in Figure 4-2(b)) was the coating of a porous polymer layer 

(Polyvinylamine, PVA) that can provide a high-density amine group. The PVA coating 

process lasted 5 hours and was followed by a wash using DI water. Then, a bifunctional 

linker, glutaraldehyde (GA), was pumped into the channels. After 1.5 hours incubation (red 

line in Figure 4-2(b)), the channels were washed using DI water. Before the solution of 
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capture antibody, anti-CD63, was introduced into the channels, the buffer solution was 

changed to the PBS (pH = 7.4) and the resonance wavelength was measured. The anti-CD63 

solution (0.1 mg/mL) was incubated inside the channels for overnight and then washed using 

the PBS solution. The final step was using the bovine serum albumin (BSA) solution (0.5% 

in 0.85% sodium chloride) to block the unoccupied aldehyde groups on the GA layer for four 

hours. The results of the anti-CD63 coating and BSA blocking are shown in Figure 4-2(b) as 

the blue and green portions, respectively. After the BSA blocking, the biosensors wereready 

for the analysis of EVs. The 4-steps functionalization process took less than 20 hours, which 

can be future optimized.  

Figure 4-2(c) summarizes the resonant wavelength shift after each step of the process 

based on the real-time measurement shown in Figure 4-2(b). The first two columns in Figure 

4-2(c) represent the sensor signals after PVA and GA coatings. The wavelength shifts are 

approximately Δλr = 0.15 nm and 0.2 nm, respectively. The third column shows ~0.4 nm 

wavelength shift owing to the change of buffer from DI water to PBS. The absorption of the 

anti-CD63 and BSA blocker results in Δλr = ~0.5 nm and ~0.25 nm, respectively. The 

measured resonance wavelength shift for each step was calculated based on the previous step. 

In each column, the error bar was the standard deviation calculated using nine independent 

measurements from nine PC sensors. 

4.4.2 Detection of EVs secreted by murine macrophages 

As a label-free detection approach, the PC biosensor can monitor the analyte-ligand 

binding process by recording the sensor output in real time. The host EVs were extracted 

from the murine macrophage cell culture and prepared to obtain a concentration of 2×1011 

EVs/mL. Figure 4-3(a) shows the sensor output over time when the host and parasite EV 

solution was flowed through the microfluidic channel at a flow rate 30 µL/min. The 
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reflection spectrum was measured every two seconds and the Δλr values were calculated. 

After 180 minutes, the ligand-analyte binding reached an equilibrium. Then, we washed the 

channels using PBS to remove the unbounded EVs and let the binding process enter the 

dissociate phase. After the PBS wash, the EVs binding results in a Δλr of approximately 

0.7nm. The positive and negative reference experiments were tested using the biosensor. For 

the positive reference experiment, the GA-coated PC biosensors were used to capture EVs 

without targeting a specific membrane protein. The positive reference experiment exhibited 

an output of Δλr = 1.8 nm. In contrast, the negative reference experiments were carried out on 

the BSA-blocked PC surface without anti-CD63 antibody. The sensor output is nearly zero 

for the negative reference experiment. The details of the reference experimental processes are 

given in supporting information. As shown in the sensorgrams in Fig 3(a), the label-free 

signals still slowly increase at the saturation region. According to the pervious study[189] on 

the label-free sensorgrams, our dynamic response curves in Figure 4-3(a) include both the 

binding reaction and the EV diffusion processes. To identify the limit of detection (LOD), we 

measured host EV samples at a dilution serial of six concentrations ranging from 2×109 

EVs/mL to 2×1011 EVs/mL. The samples were diluted consecutively by a factor of two in 

PBS. Figure 4-3(b) shows the dose-response curve, Δλr versus EV concentration, in 

logarithmic scale. At 2 × 1011 EVs/mL, the sensor output starts to saturate with Δλr = 0.7 nm. 

The dose-response data was fitted with a sigmoidal curve (the red line in Figure 4-3(b)) with 

a reduced chi-squared (R2) value of 0.854. The error bar in the dose-response curve 

represents the standard deviation (σ) of Δλr measured using nine different PC biosensors. The 

LOD of this sensor was calculated by the summation of the noise signal arising from the 

negative reference and the 3σ of the EV sample at the lowest concentration. The LOD is 
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found to be 2.18×109 EVs/mL that falls in the range of the clinically relevant concentration of 

EVs from 1×108 to 3×1012 exosomes/mL[190-192]. Therefore, the presented sensor will find 

it useful in applications of clinic diagnosis. The value of the equilibrium dissociation 

constant, KD, can be determined by the ligand half maximal effective concentration (EC50) 

based on the Michaelis-Menten equation[193, 194]. In our case, based on the obtained dose 

response in Figure 4-3(b), the value of KD was found to be EC50 = 2.36×1010 EVs/mL using 

the fitted curve (see red dashed curve). 

 

Figure 4-3 (a) Kinetic binding of anti-CD63 with host and parasite EVs at the concentration 

of c =2×1011 EVs/mL. (b) Measured resonance wavelength shifts as a function of 6 different 

concentrations of EVs from 2×109 EVs/mL to 2×1011 EVs/mL. The experiment data is fitted 

(red dash curve) and the EC50 is determined by the blue dash lines. (c) Box plot of the Δλr for 

host and parasite EVs at 2×1011 EVs/mL in comparison to the results of positive and negative 

references. (d) SEM images of the host and parasite EVs immobilized on the PC surface at 

the concentrations of 2×1011 EVs/mL. Scale bar: 1 μm. 
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4.4.3 Differentiation of host and parasite EVs 

In the present study, the surface protein chosen to distinguish the EVs that are 

released by the host and the helminth is CD63, which is a well-established exosome 

marker[195]. Recent studies showed that CD63 presents on the surface of other vesicles 

too[195]. However, ongoing proteomic analysis by our group demonstrates that the EVs 

released from Ascaris suum do not contain the homologue of CD63, and that CD63 

homologues are not found in the Ascaris genome. The absence of these proteins strongly 

suggests that the composition of Ascaris suum EVs is different to that from the host cells. 

Indeed, recent analysis by our group suggests parasite-derived EVs have widespread species- 

and stage-specific protein composition[196]. Such differences in surface protein expression 

allows us to develop the EV differentiation assay. 

The box plot in Figure 4-3(c) shows the resonance wavelength shift for host and 

parasite exosome detection with the positive reference and negative reference. Bars indicate 

mean and 25th and 75th percentiles and lines indicate mean±1.5 times the interquartile range. 

From the box plot in Figure 4-3(c), the exosome vesicles from the host with a concentration 

of 2×1011 EVs/mL have around 0.7 nm resonance wavelength shift, which this value between 

the positive reference and negative reference experiment. The detection of the parasite EVs 

using the anti-CD63 antibody-coated PC sensor generated a nearly zero output. For the 

positive reference experiment, the EVs were captured regardless of the type of 

transmembrane proteins. The positive reference experiment shows a signal of 1.6 nm shift. 

Figure 4-3(c) demonstrate the capability to discriminate EVs from host cells and parasites. 

Compared to the host EVs, the parasite EVs do not carry CD63 antigens. The details of the 

PC sensor outputs of the parasite EVs, its positive reference, and negative reference 

experiments are shown in supporting documentation. The reference experiment can be used 
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to estimate the noise level of our sensor system. As shown in Figure 4-3(c), the overall 

system noise level is 0.03 nm, which can be calculated using the standard deviation of the 

negative reference test. The label-free assay can be utilized to diagnose infectious disease 

using EVs. Figure 4-3(d) shows the scanning electron microscope (SEM) image of the host 

EVs and parasite EVs immobilized on the PC surface at the concentrations of 2×1011 

EVs/mL. The average size of the EVs is approximately 100 nm. The PC-based label-free 

assay can be used for the rapid differentiation of exosome vesicles from host and parasite in 2 

hours. 

 Conclusion 

In summary, we have demonstrated the use of the PC biosensor for rapid and specific 

discrimination of EVs extracted from the culture media; furthermore, incorporation of the PC 

biosensor into microfluidic channels allows for parallel quantification of EVs from different 

sources. The advantages of the PC-based label-free assay include the low-cost and disposable 

sensor, short assay time, and improved spectral sensitivity. The PC biosensors are less 

expensive than the gold coated nanohole array used in work of H. Im et al.22 Compared with 

the SPR device, the narrower linewidth of the PC resonance enables the detection of EVs 

without using a signal enhancer. Simplicity of the PC-based EV assay would permit detection 

in non-laboratory settings, thus eliminating the use of additional label reagents. The obtained 

LOD for pre-cleaned EV samples is 2.18×109 EVs/mL. We expect that the detection limit 

may be further improved through the use of nanoparticles to enhance the sensor signal or by 

optimizing the PC structure to achieve resonances with reduced spectral 

linewidth[197],[148]. This work focused on a single exosomal protein marker but EVs 

membrane carries more than one markers. The analysis of multiple exosomal markers 

simultaneously will allow tracking the origin of EVs in complex samples such as blood. Our 
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future work will utilize the PC-based microarray technology[198] to generate a profile of 

surface protein markers on the target EVs. With minimal sample processing, simple assay, 

and high throughput, the implementation of PC biosensor will enable EV analysis in point-

of-care applications, such as diagnosis of parasite infections in near future. 

 Supporting information 

4.6.1 Materials and supplies 

Phosphate buffered saline (PBS 10×) and bovine serum albumin (BSA) were 

purchased from Fisher Scientific (Hampton, NH, USA). Polyvinylamine (PVA, Lupamin® 

9095) was purchased from BASF (Ludwigshafen, Germany). Glutaraldehyde (GA) solution 

(25% in H2O) was purchased from Sigma-Aldrich (St. Louis, MO, USA). Anti-CD63 

Antibody, clone RFAC4 is an antibody against CD63 and was purchased from Merck 

Millipore (Billerica, MA, USA). The host and parasite exosome vesicles (EVs) were isolated 

from spent murine macrophage and parasitic nematode culture media, respectively. Murine 

macrophage cell line (J774A.1) was cultured in DMEM containing 10% FBS, 100 units of 

penicillin, 100 g/mL of streptomycin, and 2 mM L-glutamine, which were purchased from 

Sigma-Aldrich (St. Louis, MO, USA). Syringe filters were purchase from MilliporeSigma 

(Burlington, MA, USA). 

4.6.2 Fabrication of photonic crystal (PC) and microfluidic channel 

A nano-replica molding technique was used to fabricate the PC structure[186], where a 

nanopatterned silicon stamp was purchased from LightSmyth Technologies (SNS-C18-

2009). This silicon mold carriers a linear grating or PC structure (period: 555.5 nm; depth: 

140 nm; ridge width: 340 nm). To transfer the PC structure onto the surface of polymer, a 

drop of liquid ultraviolet (UV)-curable polymer (NOA-88, Norland Products, Cranbury, NJ) 

was injected into an air gap formed between the mold and a glass coverslip (24 mm × 60 mm 
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× 0.1 mm; Fisher Scientific, Hampton, NH). Subsequently, the UV curable polymer was 

exposed to UV light at room temperature. As a result, the UV-curable polymer was 

polymerized and the PC was formed at the surface of polymer. After curing, the silicon mold 

was separated from the replica. The separation was facilitated by pretreatment of the mold 

with an anti-adhesion saline (Trichloro(1H,1H,2H,2H-perfluorooctyl) silane, Sigma-

Aldrich). Next, a TiO2 layer was deposited over the PC by electron beam evaporation (BJD-

1800, Temescal). The thickness and refractive index of the TiO2 layer were measured using a 

spectral reflectometer (F20, Filmetrics). To tune the resonance wavelength near 850 nm, the 

thickness of the TiO2 layer was chosen as 150 nm. The refractive index of the deposited TiO2 

was 2.2. Figure 4-4(a) shows the fabrication process of the polymer-based PC sensor 

structure formed on the glass slide. 

To form microfluidic channels for the PC sensor (Figure 4-4(b)), a slit was first cut 

through a 100 µm-thick parafilm sheet (Parafilm® M) by a laser engraving cutting machine. 

Subsequently, the engraved parafilm was placed between the glass slide with the PC structure 

and a new glass slide with pre-drilled holes. Finally, the three layers were bonded using a hot 

press under ~15 kg pressure at 85°C. 

 

Figure 4-4 Schematics of the fabrication processes for (a) manufacturing of a PC surface and 

(b) integration of a microfluidic channel with the PC surface. 
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4.6.3 Sensor surface functionalization 

The microfluidic channel with the embedded PC was filled with a diluted PVA 

solution (1:50 volume ratio in water) and soaked for 12 h, followed by washing with 

deionized (DI) water for five times. The shift of resonance wavelength was measured. The 

PVA was attached to the PC surface via non-covalent interactions, providing high-density 

amine groups. Next, the microfluidic channel was filled with GA solution (25% in water; 

Sigma-Aldrich) and incubated for 4 h, followed by five times washing with DI water. The 

GA treatment enabled subsequent covalent attachment of antibody molecules with exposed 

amine moieties. The GA-induced wavelength resonance shift was measured relative to the 

PVA coating. Because the binding of antibody to exosome vesicles occur at pH = 7.4, the DI 

water in the channel was replaced by PBS. The wavelength resonance shift to the solution 

replacement was also monitored. 

4.6.4 Detection setup 

The reflection spectra of the sensor were obtained using the setup shown in Figure 

4-5. An incident light came from a broadband white light source (HL-2000, Ocean Optics) 

and coupled into a bifurcated fiber. A linear polarizer was placed between a collimator and 

the sensor so that only the TM-polarized guided mode resonance (GMR) mode was 

measured. A ~3 mm-diameter spot in the sensing area was illuminated at normal incidence. 

The reflected light from the sensor was collected using the bifurcated fiber connected to a 

spectrometer (USB 2000, Ocean Optics). 

When we process the data, we collect the lowest point with ±10 points to do the 

polynomial fitting. Using this method, we can measure the resonance shift as low as 0.05nm. 

We will clarify this in the supporting information. 
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Figure 4-5 Schematic of the optical measurement setup for the sensor 

4.6.5 Label-free assay protocol for EVs 

The response of the sensor to the EVs extracted from the host cells (J774A.1) is 

shown in Figure 4-6(a). The results of corresponding positive and negative control 

experiments are shown in Figure 4-6(b) and Figure 4-6(c), respectively. The first three 

columns (from left to right) in each panel of Figure 4-6 show the responses of the sensor to 

the sequential surface treatments with PVA and GA, and surface washing using DI water, 

and then PBS buffer. The fourth and fifth columns in Figure 4-6(a) show ~0.5 nm and ~0.25 

nm resonance wavelength shifts in response to the immobilization of anti-CD63 antibody and 

BSA blocker, respectively. The sixth column in Figure 4-6(a) shows ~0.7 nm resonance 

wavelength shift due to the presence of EVs secreted from the host cells. The concentration 

of the host EVs in Figure 4-6 was 2×1011 EVs/mL.  

As a positive control, the sensor surface could capture almost all host EVs because it 

was not functionalized with specific antibody molecules. In this experiment, the sensor 

surface was treated sequentially using PVA and GA and then washed using PBS buffer. 
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Because of nonspecific binding, the host EVs were captured onto the GA-treated sensor 

surface. The last column (from left to right) in Figure 4-6(b) shows a 1.6 nm resonance 

wavelength shift due to the nonspecific binding of the host EVs onto the sensor surface. 

During a negative control experiment, the sensor surface was first functionalized 

using PVA and GA, and washed using PBS buffer, and then treated with BSA to block the 

aldehyde groups on the GA layer. Therefore, when CD63 antibody molecules and EVs came 

to the sensor surface, no responses were observed (Figure 4-6(c)). 

 

Figure 4-6 Resonance wavelength shifts of the sensor during the assays for (a) the EVs from 

the host cell (J774A.1) culture, (b) a positive control, and (c) a negative control. 

The responses of the sensor to the EVs secreted from parasitic nematodes (Ascaris 

suum) are presented in Figure 4-7(a). The results of corresponding positive and negative 

control experiments are shown in Figure 4-7(b) and Figure 4-7(c), respectively. Compared to 

the host EVs, the parasite EVs do not carry CD63 antigen molecules. As a result, almost no 

resonance wavelength shift was observed from the sensor responding to the presence of the 

parasite EVs (Figure 4-7(a)). In the positive control experiment, because the EVs could be 

captured regardless of the type of transmembrane proteins, there exhibited a 1.6 nm 

resonance wavelength shift.  
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Figure 4-7 Resonance wavelength shifts of the sensor during the assays for (a) the EVs 

extracted from the parasites (Ascaris suum), (b) a positive control, and (c) a negative control. 

The results presented in Figure 4-6 and Figure 4-7 demonstrate the ability of the 

sensor to discriminate the EVs secreted from host cells and parasites. Figure 4-8 shows the 

scanning electron microscopic (SEM) images of the sensor surfaces with the host EVs 

(concentration: 2 × 1011 EVs/mL; Figure 4-8(a)), after the positive control experiment 

(Figure 4-8(b)), and after the negative control experiment (Figure 4-8(c)). These SEM photos 

were taken after the sensor surface was washed using DI water for three times. Then the 

photonic crystal biosensor was removed from microfluidics channel, coated with a discharge 

metal film, and measured using the SEM. The results indicate that the non-specific binding of 

the positive control results in the highest density of the host EVs presented on the sensor 

surface, while the BSA blockers led to the lowest density (almost zero) of the host EVs. 

 

Figure 4-8 SEM images of the host EVs captured by the sensor surface: (a) the original EVs with a 

concentration of 2×10
11

 EVs/mL, (b) after the positive control, and (c) after the negative control. 

Scale bars represent 1 µm. 
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4.6.6 Kinetic binding curve 

Figure 4-9 illustrates the kinetic binding of anti-CD63 with host EVs at the 

concentration of c =2×1011 EVs/mL, 5×1010 EVs/mL, 1×1010 EVs/mL, 5×109 EVs/mL, and 

2×109 EVs/mL, respectively. From the kinetic binding curve, the label-free signals still 

slowly increase at the saturation region. According to the pervious study on the label-free 

sensorgrams[189, 199-201], our dynamic response curves in Figure 4-9 include both the 

binding reaction and the EV diffusion processes. In another word, the label-free detection of 

EVs via CD-63 is not a perfect reaction-limited process. 

 

Figure 4-9 Kinetic binding of anti-CD63 with host EVs at the concentration of c =2×1011 

EVs/mL, 5×1010 EVs/mL, 1×1010 EVs/mL, 5×109 EVs/mL, and 2×109 EVs/mL, respectively. 
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4.6.7 Receiver operator characteristic (ROC) analysis 

 

Figure 4-10 Statistical analyses of differentiation of host and parasitic exosome vesicles 

based on experiment data in Figure 3(c) (main text). According to the ROC curve, the PC-

based label-free assay can effectively distinguish these two different types of EVs by setting 

the threshold signal range from 0.25 nm to 0.5 nm. 

4.6.8 ELISA analysis results 

To confirm the presence of EVs and compare the LOD of our technology with the 

gold starndard, we performed the ELISA assay using a commercial CD63 ELISA kit 

(LifeSpan BioSciences, Inc., Seattle, WA). The dose-response curve of the ELISA assay is 

shwon in FigureS8. Although the LOD of the label-free EV assay (2.18×109 EVs/mL) is not 

good as the LOD of the ELISA assay (~1.07×107 EVs/mL), the label-free assay still provides 

sufficient sensitivity to distinguish different EVs. In particular, the EV samples were extract 

from cell media and re-suspended in a buffer solution at a relatively high concentration fo 

2×1011 EVs/mL. 
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Figure 4-11 Dose response curve of the ELISA assay 
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CHAPTER 5.    EXOSOME MICROARRAY BASED ON LABEL-FREE IMAGING 

BIOSENSOR 

 Abstract 

Exosome vesicles (EVs) released by macrophages are potential biomarkers for the 

analysis of immune responses. This study reports a high-throughput EV detection assay 

developed using a label-free EV microarray. The EV microarray consists of a panel of seven 

antibodies that are specific to multiple membrane receptors of the target EVs. The EV 

microarray was fabricated on a photonic crystal (PC) biosensor surface. The hyperspectral 

imaging approached was implemented to quantify the antibody and EV absorptions on the 

PC-based microarray. The label-free EV microarray enables low-cost, rapid, and high-

throughput characterization of macrophage EVs with a significantly reduced sample volume 

of 5 μL. 

 Introduction 

Cancer cells secrete cytokines, chemokines and nucleic acids that have traditionally 

served as biomarkers for disease diagnosis and prognosis. Profoundly, membranous 

extracellular vesicles, including nanoscale exosomes (~100 nm) and other vesicles actively 

secreted from cancer cells, have also been found in the blood of cancer patients [157-159]. In 

particular, exosomes carry molecular constituents of their originating cells, including 

transmembrane and cytosolic proteins, mRNA, DNA, and microRNA (miRNA), and thus can 

serve as cellular surrogates [202, 203]. Exosome analysis is minimally invasive and less 

affected by the scarcity of samples or intratumorally heterogeneity [204]. Recent studies 

showed that exosomes vesicles (EVs) can transport a variety of molecular constituents, such 

as proteins, mRNA, and microRNAs, from their originating cells [205]. The analysis of 

circulating EVs in body fluids has emerged as a promising non-invasive molecular diagnostic 
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method [17, 206]. The EVs secreted by macrophages are particularly interesting since the 

macrophage-derived EVs may play a role in immune system responses that can influence the 

inflammatory response [83, 207]. The objective of the present research is to investigate the 

effect of exosomes released by lipopolysaccharide (LPS), -induced macrophages on gene 

expression and cell metabolism of adipocytes, focusing on the differential exosomal miRNA 

pattern between native and LPS-induced macrophages [207, 208]. LPS, an outer membrane 

component of Gram-negative bacteria, is a potent activator of monocytes and macrophages. 

Induced macrophages undergo many changes which allow them to kill invading bacteria or 

infected cells. They release toxic chemicals and proteins which have toxic effects on other 

cells.  

Existing comprehensive molecular profiling of exosomes is time-consuming and low-

throughput [205, 209, 210]. Currently, analyzing extracellular vesicles requires large 

quantities of vesicles to be prepared and concentrated for immunoblotting or enzyme-linked 

immunosorbent assay (ELISA) assays [168, 170]. Fluorescence-based approaches, such as 

bead-based assay, have the multiplexing capability and high sensitivity, but require excessive 

volumes of serum. In contrast, in order to overcome the challenges of current exosome 

analysis paradigms exosome analyses, label-free EV analysis have been demonstrated as 

effective tools for measuring an increasingly diverse range of cellular because they can offer 

simplified assays by reducing time-consuming labeling processes. The label-free EV 

microarray is built upon a photonic crystal (PC) biosensor in conjunction with the 

hyperspectral imaging approach[28, 58, 60, 80].  

To analyze the transmembrane receptors carried by EVs, this study demonstrates the 

EV microarray assay based on the label-free PC biosensor. The PC biosensor, consisting of a 
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sub-wavelength grating, is essentially a narrowband optical reflector that reflects a particular 

wavelength of a broadband excitation. The capture of EVs on the biosensor increases the 

refractive index on the sensor surface and results in a change in the light reflectance of the 

PC. Our microarray assay is designed to simultaneously measure seven membrane proteins 

of the macrophage-derived EVs using their corresponding antibodies printed on the EV 

microarray. 

 

Figure 5-1 Schematic flowchart of the isolation and detection of EVs using the PC biosensor. 

(a) Secretion of EVs from microphages. (b) EVs are separated from cell culture of 

macrophages using centrifuge. The extracted EVs are re-suspended in buffer for the 

subsequent label-free EV analysis. (c) Schematic diagram of the label-free detection of EVs 

using the PC biosensor that is functionalized with antibody to recognize the target EV (purple 

dots). (d) Measured transmission spectra before and after the binding of EVs. The spectral 

position of the minimal transmission represents the resonance wavelength. (e) SEM images 

of the PC surface before (top) and after (bottom) the immobilization. Scale bar: 800 nm. 
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 Results 

5.3.1 EV samples extracted from macrophages 

This study developed the label-free EV microarray to investigate two different types 

of EVs that were secreted by the native microphage and lipopolysaccharide (LPS)-induced 

macrophage as illustrated in Figure 5-1(a). Macrophages play a key role in LPS‐induced 

sepsis. However, the molecular comparison of exosomes derived from LPS‐induced 

macrophage has not been well analyzed. The macrophage-derived EV (EVnat) is featured 

with CD63 antigen on its surface. The LPS-treated macrophage-EVs (EVLPS) carries different 

antigens compared with the control EVnat. Figure 5-1(b) shows the process of EV isolation 

from the culture medium by centrifugation and resuspension. The details of the materials and 

supplies are given in the Methods and Material section. 

5.3.2 Label-free EV microarray built on PC biosensor 

The PC biosensor used in this study consists of a one-dimensional (1D) plastic 

grating substrate coated with a thin film of titanium oxide (TiO2). The cross section of a PC 

biosensor is schematically shown in Figure 5-1(c). Illuminated by a broadband source, the 

PC substrate exhibits narrowband optical resonances owing to the guided mode resonance 

effect[38, 211]. The resonances present as the dips in the transmission spectra (Figure 

5-1(d)). The spectral signatures, including the resonance wavelength (λr) and linewidth, have 

been exploited for the detection of chemicals and biomolecules[16, 17, 55, 127, 188, 198, 

212, 213]. On the surface of a PC biosensor, the absorption of the analyte, such as DNAs, 

proteins, EVs, or cells, can result in a resonance wavelength shift (Δλr) and the shift is 

proportional to the analyte concentration[182, 214-216].  

Details of the PC fabrication are described in the Methods and Material section. In 

brief, the plastic 1D grating structure was fabricated using the nano-replica molding 
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method[217]. Following the replica molding, the 100-nm-thick TiO2 thin film was deposited 

on the plastic grating by electron beam evaporation. To be specific to a target analyte, the 

sensor surface needs to be functionalized using the corresponding ligand. For the detection of 

EVs, the PC biosensors were coated using the antibodies that bind specifically to the EV 

membrane antigens. Figure 5-1(e) and Figure 5-1(f) shows the scanning electron microscope 

(SEM) images of the PC surface without (top) and with (bottom) absorbing EVs. The 

average size of EV is approximately 100 nm. The binding of EV and antibody can redshift 

the transmission dip by the amount of Δλr as shown in Figure 5-1(d).  

 

Figure 5-2 Fabricated EV microarray. (a) SEM image of the array of 60-µm-diameter 

microwells patterned on the PC substrate using photolithography. Scale bar: 300 µm (b) SEM 

image of a single microwell with the grating pattern at the bottom. Scale bar: 15 µm (c) List of 

the printed antibodies and references with the corresponding row numbers. (d) Method to 

calculate the resonance wavelength shift for the antibodies. 
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To achieve the simultaneous measurement of multiple membrane proteins carried by 

the EVs, the microarray was designed and fabricated on the PC substrate. The EV microarray 

was prepared in two steps. Firstly, the array of microwells was patterned in a layer of 

photoresist on the PC substrate by photolithography. Figure 5-2(a) shows the EV microarray 

with 11 × 12 microwells. The diameter and period of the microwell array are 60 µm and 150 

µm, respectively. One microwell of the microarray is zoomed in and shown in Figure 5-2(b). 

The inset SEM image elaborates the PC grating at the bottom of a microwell. Secondly, a 

molecular printer was used to print antibodies into the microwells [218, 219]. Before 

printing, the sensor surface inside the microwells was coated using aldehyde functional group 

to immobilize antibodies. The printings of antibodies were carried out inside an 

environmental chamber with the constant humidity of 60%. The detailed processes of the 

microarray fabrication, surface functionalization, and printing are described in the Methods 

and Material section. Figure 5-2(c) lists the materials printed at different rows (from Row 1 

to 12) of the microarray. For each row, the same material was printed. The capture antibodies 

anti-CD9, anti-CD63, anti-CD68, anti-CD80, anti-CD81, anti-CD86, and anti-I-A/I-E were 

chosen based on prior studies [220]. Between the nearby rows of antibodies, there was one 

blank row, which functioned as the reference spots. Figure 5-2(d) shows the method of how 

the antibody-induced resonance wavelength shift was calculated. For the row of an antibody, 

the λr value of each microwell was calculated by subtracting the λr value of the nearby 

reference microwell. For example, the λr values of microwells A2 and B2 were subtracted 

from the λr value of microwells A1 and B1, respectively. Then, the mean value of 11 

referenced microwells in the row was calculated to represent the Δλr of the specific antibody. 
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Later on, the resonance wavelength shifts caused by the blocking and EV detection steps 

were found using the λr value in the same microwell as the baseline. 

 

Figure 5-3 Hyperspectral imaging of the label-free EV microarray. (a) Schematic diagram of 

the hyperspectral imaging-based detection setup. (b) Intensity images captured at nine 

different wavelengths ranging from 830 nm to 870 nm. Each image consists of 1000 × 1000 

pixels with the spatial pixel resolution of 1.8 μm. (c) Reconstructed transmission spectrum at 

a given pixel in the area of interest. The resonance wavelength of this pixel, λr(x, y), is 

determined by a curve fitting algorithm. (d) Label-free image around one microwell. (e) 

Label-free images of EV microarray. The top panel shows the microarray before print EVs. 

The lower panel shows the microarray after printing different concentrations of EVs. Scale 

bar: 60 µm. (f) The profile plot before and after EVs treatment (black dash line and red dash 

line in (e)). Δλ represents the wavelength shift induced by the binding of EVs. 



www.manaraa.com

76 

5.3.3 Hyperspectral imaging setup 

To measure λr values of all microwells rapidly, a hyperspectral imaging scheme was 

adopted. Figure 5-3(a) shows the hyperspectral microscopic imaging setup, whose details are 

given in the Methods and Material section. In brief, the hyperspectral imaging system was 

built on an inverted microscope and a tunable monochromatic light source. The wavelength 

of the monochromatic illumination was selected using a fiber-coupled monochromator.  The 

illumination light was collimated and polarized before it passed through the EV microarray. 

During a measure, the wavelength was scanned in the vicinity of the PC resonance from 830 

nm to 870 nm with the incremental of 1 nm.  For each wavelength, the transmission image of 

the EV microarray was recorded by a CCD camera.  

Figure 5-3(b) shows the serial of monochromatic images captured to assemble a 

hyperspectral image data cube, which contains the spectrally dispersed intensity maps of the 

entire EV microarray. Following the data acquisition, the data cube was processed to create a 

label-free resonance image for the microarray, where a single image pixel represents an area 

on the PC biosensor and its value corresponds to the resonance wavelength shift. Figure 

5-3(c) plots the transmission intensity as a function of wavelength for a given single image 

pixel at (x, y) of the EV microarray from λ830(x, y) to λ870(x, y). The resonance wavelength 

λr(x, y) was determined by fitting the transmission curve as shown by the red dashed line in 

Figure 5-3(c).  There were 1000 × 1000 pixels in each EV microarray image and the 

resonance wavelength for all these pixels were calculated to build the label–free image. 

Figure 5-3(d) illustrates the pixelized label–free image consisting of λr(x, y) values around a 

single microwell. The blue spot and yellow area represent the regions inside the microwell 

and photoresist layer, respectively.  
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Figure 5-4 Preparation of the label–free microarray for multiplexed EV analysis. (a) Major 

steps of the label–free EV assay. The surface functionalization, printing of multiple 

antibodies, and blocking processes are summarized in Step 1–3. Step 4 illustrates the analysis 

of EVs using the printed microarray. (b) Label–free image of the EV microarray after the 

printing of seven antibodies. Rows # 3, 6, 9, 11, and 12 are the reference spots without 

antibody. (c) Box plot of the average resonance wavelength shifts for each antibody. (d) 

Label–free image obtained after the BSA blocking. This image serves as the baseline to 

calculate the wavelength shifts induced by the binding of EVs. (e) Resonance wavelength 

shifts calculated by subtracting the resonance wavelengths before from after the BSA 

blocking. 

To characterize and calibrate the PC sensor, we measured LPS-induced EV samples 

at a dilution serial of four concentrations ranging from 2×1010 particles/mL to 2×1013 

particles/mL. The samples were diluted consecutively by a factor of ten in PBS. The PC 

sensor was functionalized using the 0.5 mg/mL CD-63 antibody. Figure 5-3(e) demonstrate 

the method we calculate the resonance wavelength shift, Δλ. The top panel shows the label–

free images for the control experiment, which not print the EVs. The bottom panel shows the 

label–free images of four concentrations of EVs from 2×1010 EVs/mL to 2×1013 EVs/mL 
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with control experiment which contain zero EVs. Each resonance images have the high 

resonance shift at the boundary because the high refractive index of photoresist with 

influence the index at the boundary, so the average of the index at the boundary will higher 

itself. Figure 5-3(f) shows the profile plot before and after EVs treatment. The black line and 

red line indicate the wavelength profile of the black dash line and red dash line in Figure 

5-3(e), respectively. The difference area (green area) between the black and red line illustrate 

the resonance shift caused by EVs. The PC sensor can measure the lowest concentration at 

2×1010 that falls in the range of the clinically relevant concentration of EVs from 1×108 to 

3×1012 particles mL-1[210, 221, 222]. 

5.3.4 Label–free EV microarray assay 

Before the PC biosensor was used for the analysis of EVs, the sensor surface was 

functionalized using a four-step process reported in our previous work[223]. Major steps of 

the label-free EV detection assay are summarized in Figure 5-4(a). The initial step (step 1 in 

Figure 5-4(a)) was the coating of a porous polymer layer (Polyvinylamine, PVA) and a 

bifunctional linker, glutaraldehyde (GA), on the cleaned blank PC microarray that can 

provide a high–density amine group. The PVA and GA coating process lasted 5 hours for 

each process and was followed by a wash using DI water. Before print solution of capture 

antibodies, the buffer solution was changed to the PBS (pH = 7.4). The capture antibodies 

were printed at the concentration of at 0.5 mg mL–1 (step 2 in Figure 5-4(a)) and were 

incubated for 4 hours. After the incubation, the microarray was washed in a phosphate 

buffered saline (PBS) solution to remove the excessive antibodies. Next, the microarray was 

blocked the unoccupied aldehyde groups on the GA layer for four hours by using the bovine 

serum albumin (BSA) solution (0.5% in 0.85% sodium chloride) to prevent non–specific 
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binding (step 3 in Figure 5-4(a)). After the BSA blocking, the PC microarray were ready for 

the measuring EV binding to the antibodies. 

During the EV detection experiment, label–free images of the array were measured 

after each step shown in Figure 5-4(a). Figure 5-4(b) shows the label–free microarray image 

measured after the printing of antibodies and before the BSA blocking step. The pseudo–

color plot represents the resonance wavelength for the pixels inside the microwells. Since the 

region out of the microwave was covered by the photoresist, the resonance wavelength of the 

region was manually set at 1000 nm. The box plot in Figure 5-4(c) shows the resonance 

wavelength shifts for the panel of antibodies, including CD–9, CD–63, CD–68, CD–80, CD–

81, CD–86, and I–A/I–E. Bars indicate mean and 25th and 75th percentiles and lines indicate 

mean ±1.5 times the interquartile range. For each antibody, the Δλr values were calculated by 

subtracting of the reference spot from the nearby sample spot to the and averaging the row of 

12 spots. Figure 5-4(d) shows the label–free microarray image measured after the BSA 

blocking step and before the EV binding step. The box plot in Figure 5-4(c) shows the 

resonance wavelength shifts for the BSA blocking step of the panel of antibodies. For the 

BSA blocking step, the Δλr values were calculated by subtracting of the spots by previous 

step (λr of antibodies) and averaging the row of 12 spots. 

5.3.5 Characterization of EVs from different microphages 

Two type of the macrophage–derived EVs sample was added and incubated on the 

EV microarray for 3 hours. The LiterSlipTM cover glass (Electron Microscope Sciences) with 

approximate 7.55 µL volume and humidity control environment system was used to incubate 

the exosome solution in order to reduce the solution evaporation. The concentration and 

volume of both the EV samples were 2×1013 particles mL–1 and 5 μL, respectively. Figure 

5-5(a) is the label–free image after the EVnon absorption. Figure 5-5(b) compares the 
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resonance wavelength shifts of EV bindings with regard to each antibody. The label–free 

image measured after the BSA blocking step was used as the baseline to calculate the 

resonance wavelength shifts. The Δλr for anti–CD68 is highest and anti–CD80 is lowest, 

which the value is 1.75 nm and 0.32 nm, respectively. Figure 5-5(c) is the label–free image 

after the EVLPS incubation and binding. The box plot in Figure 5-5(d) shows the resonance 

wavelength shifts of EV bindings for the antibodies panel. For the EVLPS, the resonance 

wavelength shift of anti–CD80 is around 1.5 nm and anti-CD9 is 0.3 nm. By compare with 

the resonance wavelength shift of the EV binding for each antibody, the Δλr of the EVnon 

present the lowest shift but the EVLPS shows the largest. According to the trend of the Δλr, it 

can easily differentiation whether the EV has LPS induced.  Figure 5-5(e) shows the 

antibodies profiling of non-induced macrophage-derived EV and LPS-induced macrophage-

derived EV. The radar chart in Figure 5-5(f) display the EVnon and EVLPS observations with 

seven different antibodies. The red area represents the EVnon and the blue area shows the 

EVLPS. The data length of a spoke is proportional to the resonance wavelength shift of the 

antibody for the data point relative to the maximum magnitude of the antibody across all data 

points. Based on the radar chart, we can differential the EVnon and EVLPS without the same 

concentrations. 
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Figure 5-5 Characterization of multiple membrane proteins of EVs secreted by native and 

LPS-induced macrophages. (a) Label-free image of the bindings of murine macrophage-

derived EVs. (b) Box plot of the average resonance wavelength shifts caused by the binding 

of EVnat to the panel of seven antibodies. (c) Label-free image of the bindings of EVs from 

the LPS-induced macrophages. (d) Statistical analysis of the binding results of EVLPS. (e) 

Distribution profiles of membrane proteins on the EVs from native and LPS-induced 

macrophages, respectively. (f) Radar chart of wavelength shifts measured for the bindings 

between antibodies and two different types of EVs (EVnat and EVLPS).   
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 Methods and Materials 

5.4.1 Preparation of EV samples 

Murine macrophage cell line J774A.1 (TIB-67, ATCC) were cultured in Dulbecco's 

Modified Eagle Medium (DMEM) containing 10% FBS, 100 Units of penicillin, 100 µg/ml 

of streptomycin, and 2 mM L-glutamine (Sigma-Aldrich, St. Louis, MO). After being 

cultured at 37 °C with 5% CO2 for 24 hr, gently rotate the flask with the remaining medium 

to wash off the dead cells, then aspirate the medium. Wash the cells with 8-10 ml cold DPBS 

(Dulbecco’s Phosphate Buffered Saline, Thermo Fisher Scientific, Waltham, MA), then 

gently rotate the flask to wash off the dead cells, then aspirate the DPBS. Add 10 ml cold 

DPBS and leave the flask in 4℃ for 3 min. Then use cell scraper to gently detach the cells. 

Collect the cells in the DPBS to a 15 ml sterile tube. Centrifuge at 1000 rpm/min for 5 min in 

a swing bucket centrifuge. Aspirate the DPBS, resuspend the cell pellet with 600 ul culture 

medium. Transfer 100 ul of the cell suspension to a new T-75 flask with 8-10 ml culture 

medium. Usually, the cells will reach to ~90 % confluency on day 3 of sub-culturing. 

The culture medium was collected and filtered through 0.22 µm filter to remove 

macrophage and debris, and then loaded on ultracentrifuge tube. To separate EVs from the 

culture media, EV samples were centrifuged again at 120000g/min for 90 min to collect EVs. 

Then the pellet was resuspended with PBS and transferred into 1.5 ml Beckman 

ultracentrifuge tube. Then they were spinned at 55,000 rpm/min for 2 hours and the pellet 

was resuspended with PBS. All the samples were centrifuged at 4℃. The harvested EVs 

were stored in a -80 °C freezer for future use. 

The concentrations of the resuspended EV samples were measured using a 

Nanoparticle Tracking Analysis system (NanoSight LM10, Malvern Instruments, Malvern, 

UK). For EVs concentration measurement, EVs from J774 or worms were diluted 100 times 

https://www.google.com/search?rlz=1C1CHBF_enUS843US843&q=Waltham,+Massachusetts&stick=H4sIAAAAAAAAAOPgE-LSz9U3MCooMTBJU-IAsTOqjE21tLKTrfTzi9IT8zKrEksy8_NQOFYZqYkphaWJRSWpRcWLWMXCE3NKMhJzdRR8E4uLE5MzSotTS0qKAbi_f6RdAAAA&sa=X&ved=2ahUKEwiu6KyLm6bjAhWQHc0KHelNDl8QmxMoATAmegQIDRAL
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with PBS and loaded into the nanoparticle analyzer followed the instructions. In brief, three 

videos were recorded from each sample, each video lasts for 30 sec. Mean concentration 

were calculated based on the three videos. 

5.4.2 Fabrication of PC-based EV microarray 

The nano-replica molding technique was used to generate the sub-micron grating 

pattern. The silicon replication mold stamp was purchased from LightSmyth Technologies 

(SNS-C18-2009). This silicon stamp carriers a linear grating with the period, depth, and ridge 

width of  555.5 nm, 140 nm, and 340 nm, respecitvely. To transfer the grating pattern, a drop 

of liquid ultraviolet (UV)-curable polymer (NOA-88, Norland Products, Cranbury, NJ) was 

injected into an air gap formed between the mold and a 0.18 mm-thick glass coverslip. 

Subsequently, the UV curable polymer was crosslinked using UV light at room temperature. 

As a result, the UV-curable polymer was polymerized and the grating was formed on the 

surface of polymer. After curing, the silicon mold was carefully separated from the silicon 

stamp. The separation was facilitated by pretreatment of the mold with an anti-adhesion 

saline (Trichloro(1H,1H,2H,2H-perfluorooctyl), Sigma-Aldrich). Next, the TiO2 layer was 

deposited on the polymer grating using an electron beam evaporation (BJD-1800, Temescal). 

The thickness and refractive index of the TiO2 layer were measured using a spectral 

reflectometer (F20, Filmetrics). To tune the resonance wavelength near 850 nm, the thickness 

of the TiO2 layer was chosen as 150 nm and the refractive index of the TiO2 film was 2.2. 

The array of microwells was patterned in a 1.5-μm-thick layer of photoresist (AZ 

5214E, MicroChemicals) on the fabricated PC substrate by photolithography. Before the 

printing of antibodies, the exposed PC surface was coated with aldehyde functional group to 

immobilize antibodies. To do so, the PC sensor was treated with a diluted polyvinylamine 

solution (1:50 volume ratio in water) and soaked for 12 h, followed by washing with 



www.manaraa.com

84 

deionized (DI) water. The PVAm was attached to the PC surface via non-covalent 

interactions, providing high-density amine groups. Next, the PC was immersed with GA 

solution (25% in water; Sigma-Aldrich) and incubated for 4 h, followed by washing with DI 

water. The GA treatment enabled subsequent covalent attachment of antibody molecules with 

exposed amine moieties. Because the binding of antibody to exosome vesicles occur at pH = 

7.4, then the PC sensors was raised by PBS solutions and ready to use. The antibodies were 

printed into the microwells using a contact printer (Nano eNabler, BioForce 

Nanosciences)[218, 219]. The antibodies were mixed with the printing buffer (Spotting 

Buffer Kit, BioForce Nanosciences) at a ratio of 50:50% (v/v). In each microwell, the sample 

volume was approximately 6 pL. 

5.4.3 Hyperspectral imaging setup 

The setup is built based on the body of a standard microscope, but in addition to 

ordinary bright field imaging, another illumination path is provided from a fiber-coupled 

broadband high-power tungsten halogen light (OceanOptics HL-2000-HP). A 

monochromator (Mini-Chrom, Optometrics Corp.) was used to scan the wavelength of the 

collimated excitation. The bandwidth of the monochromatic light was controlled using the 

slit size. The monochromatic excitation split to two light paths, one of the light paths coupled 

in a fiber and connect to a spectrometer (USB2000, OceanOptics) to get the spectra of the 

light after the monochromator. From the spectra, we can accurate find the wavelength of the 

monochromator excitation. Another light path is collimated and filtered by a polarizer to 

illuminate the PC-based EV microarray with light that is polarized with its electric field 

vector oriented perpendicular to the grating lines. The transmission image was captured using 

a microscope (IX-81, Olympus) with a 4× objective (Zeiss) and an EMCCD camera (C9100, 

Hamamatsu) with 1000 × 1000 pixel. The monochromator was tuned from 830 nm to 870 nm 



www.manaraa.com

85 

with the increment of 0.5 nm. For each wavelength, the transmission image of the EV 

microarray was recorded by the CCD to build a data cube. The data cube can be processed to 

create a label-free resonance image for the microarray, where a single image pixel represents 

an area on the PC biosensor and its value corresponds to the resonance wavelength shift. 
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CHAPTER 6.    CONCLUSION 

In summary, optical label-free biosensors serve as a powerful detection tool to 

analyze biomolecular interactions. This type of biosensor can eliminate the effect of the 

labels on the molecular conformations and can simplify the time and effort required for assay 

development. This dissertation seeks a novel and efficient modality able to overcome the 

limitations of low detection sensitivity, slow molecules mass transfer, and poor throughput, 

that occur in the current optical label-free biosensors.  

First, we investigate the optical bound states in the continuum (BIC) of the slotted 

high-contrast grating (sHCG) structures to increase the sensitivity of the sHCG-based 

biosensors. The sHCG support BICs and high-Q resonant modes and the slot position can be 

utilized to tune the linewidth of the high-Q resonances. The eigenvalue solver can directly 

determine the BICs for different designs of the sHCG structure, and the rigorous coupled-

wave analysis is performed to investigate the high-Q resonance phenomena for both TE- and 

TM-polarized cases. 

Then, we propose a lateral flow-through optofluidic biosensor that can overcome the 

mass-transfer limitation for rapid detection of biomarkers. The HCG-based biosensor is 

fabricated using the silicon-on-insulator technology. Bonding of a polydimethylsiloxane 

slab directly onto the surface results in an ultracompact biosensor, where analyte solutions 

are restricted to flow only in the space between the nanoposts. No flow exists above the 

nanoposts. The lateral flow-through feature, in conjunction with high-Q resonance modes 

associated with optical bound states of the sHCG, offers an improved sensitivity to subtle 

molecule-bonding induced changes in refractive index. The device exhibits a resonance mode 

around 1550 nm wavelength and provides an index sensitivity of 720 nm/RIU. Biosensing is 
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conducted to detect the epidermal growth factor receptor 2 (ErbB2), a protein biomarker for 

early-stage breast cancer screening, by monitoring resonance wavelength shifts in response to 

specific analyte-ligand binding events at the metasurface. The limit of detection of the device 

is 0.7 ng mL-1 for ErbB2. 

Finally, we develop a high-throughput exosome vesicles (EVs) detection assay 

by combining the hyperspectral imaging and photonic crystal-based label-free 

microarray techniques. The EV microarray consists of a panel of seven antibodies that are 

specific to multiple membrane receptors of the target EVs. The EV microarray is fabricated 

on a photonic crystal (PC) biosensor surface. The hyperspectral imaging approached is 

implemented to quantify the antibody and EV absorptions on the PC-based microarray. The 

label-free EV microarray enables low-cost, rapid, and high-throughput characterization of 

macrophage EVs with a significantly reduced sample volume of 5 μL.  
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